Free Access
Issue
ESAIM: COCV
Volume 19, Number 2, April-June 2013
Page(s) 587 - 615
DOI https://doi.org/10.1051/cocv/2012023
Published online 21 February 2013
  1. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, 2nd edition. Birkhäuser (2006). [Google Scholar]
  2. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, in Evolution Problems. I. With the collaboration of M. Artola, M. Cessenat and H. Lanchon. Translated from the French by A. Craig. Springer-Verlag, Berlin 5 (1992). [Google Scholar]
  3. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  4. G. Geymonat and P. Leyland, Transport and propagation of a perturbation of a flow of a compressible fluid in a bounded region. Arch. Rational Mech. Anal. 100 (1987) 53–81. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Girinon, Quelques problémes aux limites pour les équations de Navier–Stokes compressibles. Ph.D. thesis, Université de Toulouse (2008). [Google Scholar]
  6. M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier–Stokes flows with boundary control. SIAM J. Control Optim. 39 (2000) 594–634. [CrossRef] [MathSciNet] [Google Scholar]
  7. V.I. Judovič, A two-dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain. Amer. Math. Soc. Trans. 57 (1966) 277–304 [previously in Mat. Sb. (N.S.) 64 (1964) 562–588 (in Russian)]. [Google Scholar]
  8. J. Neustupa, A semigroup generated by the linearized Navier–Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces. Navier–Stokes equations: theory and numerical methods (Varenna, 1997), Pitman. Research Notes Math. Ser. 388 (1998) 86–100. [Google Scholar]
  9. J.P. Raymond, Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 921–951. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.P. Raymond and A.P. Nguyen, Control localized on thin structures for the linearized Boussinesq system. J. Optim. Theory Appl. 141 (2009) 147–165. [CrossRef] [Google Scholar]
  11. A. Valli and W.M. Zajczkowski, Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103 (1986) 259–296. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.