Free Access
Issue
ESAIM: COCV
Volume 19, Number 4, October-December 2013
Page(s) 976 - 1013
DOI https://doi.org/10.1051/cocv/2012041
Published online 01 August 2013
  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math. 12 623–727. [Google Scholar]
  2. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17 (1964) 35–92. [Google Scholar]
  3. M. Birkner, J. Alfredo López-Mimbela, and A. Wakolbinger, Comparison results and steady states for the Fujita equation with fractional Laplacian. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005) 83–97. [CrossRef] [Google Scholar]
  4. K. Bogdan, The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 (1997) 43–80. [MathSciNet] [Google Scholar]
  5. X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224 (2010) 2052–2093. [CrossRef] [MathSciNet] [Google Scholar]
  6. L.A. Caffarelli, J.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. (JEMS) 12 (2010) 1151–1179. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Costabel, M. Dauge and R. Duduchava, Asymptotics without logarithmic terms for crack problems. Commun. Partial Diff. Eq. 28 (2003) 869–926. [Google Scholar]
  8. M. Dauge, Elliptic Boundary Value Problems on Corner Domains, in Lect. Notes Math., vol. 1341, Smoothness and asymptotics of solutions. Springer-Verlag, Berlin (1988). [Google Scholar]
  9. D. DeSilva and J.-M. Roquejoffre, Regularity in a one-phase free boundary problem for the fractional laplacian. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, à paraître (2011). [Google Scholar]
  10. A. Henrot and M. Pierre, Variation et optimisation de formes. Math. Appl., vol. 48, Une analyse géométrique. Springer, Berlin (2005). [Google Scholar]
  11. E. Lauga, M.P. Brenner and H.A. Stone, Microfluidics: The no-slip boundary condition (2007). [Google Scholar]
  12. O. Lopes and M. Mariş, Symmetry of minimizers for some nonlocal variational problems. J. Funct. Anal. 254 (2008) 535–592. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Lu and J. Zu, An overdetermined problem in riesz potential and fractional laplacian, Preprint Arxiv: 1101.1649v2 (2011). [Google Scholar]
  14. J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. [Google Scholar]
  15. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007) 67–112. [Google Scholar]
  16. O. Vinogradova and G. Yakubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (1986) 479–487. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.