Free Access
Issue
ESAIM: COCV
Volume 19, Number 4, October-December 2013
Page(s) 1014 - 1029
DOI https://doi.org/10.1051/cocv/2012042
Published online 26 July 2013
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2005). [Google Scholar]
  3. T. Baumgart, S. Das, W.W. Webb and J.T. Jenkins, Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89 (2005) 1067–1080. [CrossRef] [PubMed] [Google Scholar]
  4. T. Baumgart, S.T. Hess and W.W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821–824. [CrossRef] [PubMed] [Google Scholar]
  5. G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. J. Convex Anal. 14 (2007) 543–564. [Google Scholar]
  6. P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26 (1970) 61–80. [CrossRef] [PubMed] [Google Scholar]
  7. R. Choksi and M. Veneroni, Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9. [Google Scholar]
  8. L. Deseri, M.D. Piccioni and G. Zurlo, Derivation of a new free energy for biological membranes. Contin. Mech. Thermodyn. 20 (2008) 255–273. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.P. do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese. [Google Scholar]
  10. C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 6585–6612. [CrossRef] [MathSciNet] [Google Scholar]
  11. C.M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010) 2904–2928. [CrossRef] [MathSciNet] [Google Scholar]
  12. E.L. Elson, E. Fried, J.E. Dolbow and G.M. Genin, Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39 (2010) 207–226. [CrossRef] [PubMed] [Google Scholar]
  13. E. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14 (1974) 923–931. [CrossRef] [PubMed] [Google Scholar]
  14. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press (1992). [Google Scholar]
  15. W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C 28 (1973) 693–703. [Google Scholar]
  16. M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Technical report, Institute for Applied Mathematics, University of Bonn (2011). [Google Scholar]
  17. M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. (2012). DOI: 10.1007/s00526-012-0550-z. [Google Scholar]
  18. J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35 (1986) 45–71. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. Jülicher and R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett. 70 (1993) 2964–2967. [CrossRef] [PubMed] [Google Scholar]
  20. F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996) 2670–2683. [CrossRef] [Google Scholar]
  21. J.S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Moser, A generalization of Rellich’s theorem and regularity of varifolds minimizing curvature. Technical Report 72, Max-Planck-Institut for Mathematics in the Sciences (2001). [Google Scholar]
  23. U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13–137. [CrossRef] [Google Scholar]
  24. J.S. Sohn, Y.-H. Tseng, S. Li, A. Voigt and J.S. Lowengrub, Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys. 229 (2010) 119–144. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. R.H. Templer, B.J. Khoo and J.M. Seddon, Gaussian curvature modulus of an amphiphilic monolayer. Langmuir 14 (1998) 7427–7434. [CrossRef] [Google Scholar]
  26. X. Wang and Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56 (2008) 347–371. [PubMed] [Google Scholar]
  27. T.J. Willmore, Riemannian geometry. Clarendon Press, Oxford (1993). [Google Scholar]
  28. G. Zurlo, Material and Geometric Phase Transitions in Biological Membranes. Ph.D. thesis, University of Pisa (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.