Free Access
Volume 19, Number 4, October-December 2013
Page(s) 1030 - 1054
Published online 03 June 2013
  1. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences 87 (2004). Control Theory and Optimization, II. [Google Scholar]
  2. A. Ajami, T. Maillot, N. Boizot, J.-F. Balmat, and J.-P. Gauthier. Simulation of a uav ground control station, in Proceedings of the 9th International Conference of Modeling and Simulation, MOSIM’12 (2012). To appear, Bordeaux, France (2012). [Google Scholar]
  3. G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, Optimizing principles underlying the shape of trajectories in goal oriented locomotion for humans, in Humanoid Robots, 2006 6th IEEE-RAS International Conference on (2006) 131–136. [Google Scholar]
  4. G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, On the nonholonomic nature of human locomotion. Autonomous Robots 25 2008 25–35. [CrossRef] [Google Scholar]
  5. G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, An optimality principle governing human walking. Robot. IEEE Trans. on 24 2008) 5–14. [CrossRef] [Google Scholar]
  6. B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis, and J.P. Gauthier, The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4 (2008) 25. [CrossRef] [Google Scholar]
  7. B. Berret, J.-P. Gauthier, and C. Papaxanthis, How humans control arm movements. Tr. Mat. Inst. Steklova 261 (2008) 47–60. [Google Scholar]
  8. Y. Chitour, F. Jean, and P. Mason, Optimal control models of goal-oriented human locomotion. SIAM J. Control Optim. 50 (2012) 147–170. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Chitsaz and S. LaValle, Time-optimal paths for a dubins airplane, in Decision and Control, 2007 46th IEEE Conference on (2007) 2379–2384. [Google Scholar]
  10. F. Chittaro, F. Jean, and P. Mason. On the inverse optimal control problems of the human locomotion: stability and robustness of the minimizers. J. Math. Sci. (To appear). [Google Scholar]
  11. J.-P. Gauthier, B. Berret, and F. Jean. A biomechanical inactivation principle. Tr. Mat. Inst. Steklova 268 (2010) 100–123. [Google Scholar]
  12. M. Golubitsky and V. Guillemin, Stable mappings and their singularities. Springer-Verlag, New York, Graduate Texts in Mathematics 14 (1973). [Google Scholar]
  13. F. Jean, Optimal control models of the goal-oriented human locomotion, Talk given at the “Workshop on Nonlinear Control and Singularities”, Porquerolles, France (2010). [Google Scholar]
  14. W. Li, E. Todorov, and D. Liu, Inverse optimality design for biological movement systems. World Congress 18 (2011) 9662–9667. [Google Scholar]
  15. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The mathematical theory of optimal processes, Translated from the Russian by K.N. Trirogoff, edited by L.W. Neustadt. Interscience Publishers John Wiley & Sons, Inc. New York-London (1962). [Google Scholar]
  16. S.M. Rump, Verification of positive definiteness. BIT 46 (2006) 433–452. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Thom, Les singularités des applications différentiables. Ann. Inst. Fourier Grenoble 6 (1955–1956) 43–87. [CrossRef] [Google Scholar]
  18. R. Vinter, Optimal control, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.