Free Access
Volume 19, Number 4, October-December 2013
Page(s) 1064 - 1075
Published online 04 July 2013
  1. L. Ambrosio, Lectures notes on optimal transport problems. In Mathematical aspects of evolving interfaces, CIME summer school in Madeira (Pt), vol. 1812, edited by P. Colli and J. Rodrigues, Springer (2003) 1–52. [Google Scholar]
  2. L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208 (2004) 261–301. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Bianchini and F. Cavalletti, The monge problem in geodesic spaces. IMA Vol. Math. Appl. 153 (2011) 217–233. [CrossRef] [Google Scholar]
  4. L.A. Caffarelli, M. Feldman and R.J. McCann, Constructing optimal maps for Morge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15 (2001) 1–26. [Google Scholar]
  5. G. Carlier, L. De Pascale and F. Santambrogio, A strategy for non-strictly convex transport cost and the example of || xy || p in R2. Commun. Math. Sci. 8 (2010), 931–941. [CrossRef] [Google Scholar]
  6. T. Champion and L. De Pascale, The monge problem for strictly convex norms in Rd. J. Eur. Math. Soc. 12 (2010) 1355–1369. [CrossRef] [Google Scholar]
  7. T. Champion and L. De Pascale, The monge problem in Rd. Duke Math. J. 157 (2011) 551–572. [CrossRef] [MathSciNet] [Google Scholar]
  8. T. Champion, L. De Pascale and P. Juutinen, The ∞ − Wasserstein distance: local solutions and existence of optimal transport maps. SIAM J. Math. Anal. 40 (2008) 1–20. [Google Scholar]
  9. P. Chen, F. Jiang and X.-P. Yang, Optimal transportation in Rn for a distance cost with convex constraints. To appear. [Google Scholar]
  10. L. De Pascale and S. Rigot, Monge’s transport problem in the Heisenberg group. Adv. Calc. Var. 4 (2010) 195–227. [Google Scholar]
  11. L.C. Evans and W. Gangbo, Differantial equations methods for the Monge–Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999) 1–66. [Google Scholar]
  12. C. Jimenez and F. Santambrogio, Optimal transportation for a quadratic cost with convex constrains and applications. J. Math. Pures Appl. 98 (2012) 103–113. [CrossRef] [Google Scholar]
  13. L.V. Kantorovich, On the translocation of masses. Dokl. Akad. Nauk. USSR 37 (1942) 199–201. [Google Scholar]
  14. L. Kantorovich, On a problem of Monge (in Russian). Uspekhi Mat. Nauk. 3 (1948) 225–226. [Google Scholar]
  15. R.J. McCann, N. Guillen, Five lectures on optimal transportation: geometry, regularity and applications. To appear in Proc. of the Séminaire de Mathématiques Supérieure (SMS) held in Montréal, QC, June 27-July 8, 2011. [Google Scholar]
  16. G. Monge, Mémoire sur la théorie des déblais et des Remblais. Histoire de l’Académie Royal des Sciences de Paris (1781) 666–704. [Google Scholar]
  17. V.N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math. 141 (1979) 1–178. [Google Scholar]
  18. N.S. Trudinger and X.-J. Wang, On the Monge mass transfer problem. Calc. Var. Partial Differ. Equ. 13 (2001) 19–31. [CrossRef] [Google Scholar]
  19. C. Villani, Topics in optimal transportation. Graduate Studies in Mathematics, J. Amer. Math. Soc. Providence, RI 58 (2003). [Google Scholar]
  20. C. Villani, Optimal transport, old and new. Springer Verlag (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.