Free Access
Issue
ESAIM: COCV
Volume 19, Number 4, October-December 2013
Page(s) 1076 - 1108
DOI https://doi.org/10.1051/cocv/2013046
Published online 13 August 2013
  1. M. Asch and A. Münch, An implicit scheme uniformly controllable for the 2-D wave equation on the unit square. J. Optimiz. Theory Appl. 143 (2009) 417–438. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  3. L. Baudouin, Lipschitz stability in an inverse problem for the wave equation, Master report (2001) available at: http://hal.archives-ouvertes.fr/hal-00598876/en/. [Google Scholar]
  4. L. Baudouin, M. de Buhan and S. Ervedoza, Global Carleman estimates for wave and applications. Preprint. [Google Scholar]
  5. L. Baudouin and S. Ervedoza, Convergence of an inverse problem for discrete wave equations. Preprint. [Google Scholar]
  6. C. Castro, S. Micu and A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28 (2008) 186–214. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Cîndea, S. Micu and M. Tucsnak, An approximation method for the exact controls of vibrating systems. SIAM. J. Control. Optim. 49 (2011) 1283–1305. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM. J. Control. Optim. 48 (2009) 521–550. [Google Scholar]
  9. G. Lebeau and M. Nodet, Experimental study of the HUM control operator for linear waves. Experiment. Math. 19 (2010) 93–120. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Ekeland and R. Temam, Convex analysis and variational problems, Classics in Applied Mathematics. Soc. Industr. Appl. Math. SIAM, Philadelphia 28 (1999). [Google Scholar]
  11. S. Ervedoza and E. Zuazua, The wave equation: Control and numerics. In Control of partial differential equations of Lect. Notes Math. Edited by P.M. Cannarsa and J.M. Coron. CIME Subseries, Springer Verlag (2011). [Google Scholar]
  12. E. Fernández-Cara and A. Münch, Strong convergent approximations of null controls for the heat equation. Séma Journal 61 (2013) 49–78. [Google Scholar]
  13. E. Fernández-Cara and A. Münch, Numerical null controllability of the 1-d heat equation: Carleman weights and duality. Preprint (2010). Available at http://hal.archives-ouvertes.fr/hal-00687887. [Google Scholar]
  14. E. Fernández-Cara and A. Münch, Numerical null controllability of a semi-linear 1D heat via a least squares reformulation. C.R. Acad. Sci. Série I 349 (2011) 867–871. [CrossRef] [Google Scholar]
  15. E. Fernández-Cara and A. Münch, Numerical null controllability of semi-linear 1D heat equations: fixed points, least squares and Newton methods. Math. Control Related Fields 2 (2012) 217–246. [CrossRef] [Google Scholar]
  16. A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, in vol. 34 of Lecture Notes Series. Seoul National University, Korea (1996) 1–163. [Google Scholar]
  17. X. Fu, J. Yong, and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations. SIAM J. Control Optim. 46 (2007) 1578–1614. [CrossRef] [MathSciNet] [Google Scholar]
  18. O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations. Asymptotic Analysis 32 (2002) 185–220. [Google Scholar]
  19. R. Glowinski and J.L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numerica (1996) 159–333. [Google Scholar]
  20. R. Glowinski, J. He and J.L. Lions, On the controllability of wave models with variable coefficients: a numerical investigation. Comput. Appl. Math. 21 (2002) 191–225. [MathSciNet] [Google Scholar]
  21. R. Glowinski, J. He and J.L. Lions, Exact and approximate controllability for distributed parameter systems: a numerical approach in vol. 117 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge (2008). [Google Scholar]
  22. I. Lasiecka and R. Triggiani, Exact controllability of semi-linear abstract systems with applications to waves and plates boundary control. Appl. Math. Optim. 23 (1991) 109–154. [CrossRef] [MathSciNet] [Google Scholar]
  23. J-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Recherches en Mathématiques Appliquées, Tomes 1 et 2. Masson. Paris (1988). [Google Scholar]
  24. A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation. ESAIM: M2AN 39 (2005) 377–418. [CrossRef] [EDP Sciences] [Google Scholar]
  25. A. Münch, Optimal design of the support of the control for the 2-D wave equation: a numerical method. Int. J. Numer. Anal. Model. 5 (2008) 331–351. [Google Scholar]
  26. P. Pedregal, A variational perspective on controllability. Inverse Problems 26 (2010) 015004. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Periago, Optimal shape and position of the support of the internal exact control of a string. Systems Control Lett. 58 (2009) 136–140. [CrossRef] [MathSciNet] [Google Scholar]
  28. E.T. Rockafellar, Convex functions and duality in optimization problems and dynamics. In vol. II of Lect. Notes Oper. Res. Math. Ec. Springer, Berlin (1969). [Google Scholar]
  29. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies Appl. Math. 52 (1973) 189–221. [Google Scholar]
  30. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  31. D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75 (1996) 367–408. [Google Scholar]
  32. P-F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control. Optim. 37 (1999) 1568–1599. [CrossRef] [MathSciNet] [Google Scholar]
  33. X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control. Optim. 39 (2000) 812–834. [Google Scholar]
  34. E. Zuazua, Propagation, observation, control and numerical approximations of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. [CrossRef] [MathSciNet] [Google Scholar]
  35. E. Zuazua, Control and numerical approximation of the wave and heat equations. In vol. III of Intern. Congress Math. Madrid, Spain (2006) 1389–1417. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.