Free Access
Volume 19, Number 4, October-December 2013
Page(s) 1109 - 1165
Published online 13 August 2013
  1. S.N. Armstrong and C.K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games. Trans. Amer. Math. Soc. 364 (2012) 595–636. [CrossRef] [MathSciNet] [Google Scholar]
  2. S.N. Armstrong, C.K. Smart and S.J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions. Proc. Amer. Math. Soc. 139 (2011) 1763–1776. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differ. Equ. 106 (1993) 90–106. [CrossRef] [Google Scholar]
  4. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris, Math. Appl. 17 (1994). [Google Scholar]
  5. G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications. J. Differ. Equ. 154 (1999) 191–224. [CrossRef] [Google Scholar]
  6. G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Commun. Partial Differ. Equ. 26 (2001) 2323–2337. [Google Scholar]
  7. G. Barles and P.-L. Lions, Remarques sur les problèmes de réflexion oblique. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 69–74. [Google Scholar]
  8. G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133–1148. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Barles and E. Rouy, A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications. Commun. Partial Differ. Equ. 23 (1998) 1995–2033. [Google Scholar]
  10. G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271–283. [MathSciNet] [Google Scholar]
  11. P. Cheridito, H.M. Soner, N. Touzi and N. Victoir, Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math. 60 (2007) 1081–1110. [Google Scholar]
  12. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. [Google Scholar]
  13. P. Dupuis and H. Ishii, SDEs with oblique reflection on nonsmooth domains. Ann. Probab. 21 (1993) 554–580. [CrossRef] [MathSciNet] [Google Scholar]
  14. L.C. Evans, Partial differential equations, in Graduate Studies in Mathematics, vol. 19. Amer. Math. Soc., Providence, RI, second edition (2010). [Google Scholar]
  15. A. Friedman, Differential games. In Handbook of game theory with economic applications, Vol. II, Handbooks in Econom. North-Holland, Amsterdam (1994) 781–799. [Google Scholar]
  16. Y. Giga, Surface evolution equations, A level set approach. In Monographs in Mathematics. Birkhäuser Verlag, Basel 99 (2006). [Google Scholar]
  17. Y. Giga and Q. Liu, A billiard-based game interpretation of the Neumann problem for the curve shortening equation. Adv. Differ. Equ. 14 (2009) 201–240. [Google Scholar]
  18. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. [Google Scholar]
  19. H. Ishii, Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDEs. Duke Math. J. 62 (1991) 633–661. [CrossRef] [MathSciNet] [Google Scholar]
  20. R.V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature. Commun. Pure Appl. Math. 59 (2006) 344–407. [Google Scholar]
  21. R. V. Kohn and S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations. Commun. Pure Appl. Math. 63 (2010) 1298–1350. [CrossRef] [Google Scholar]
  22. P.-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Math. J. 52 (1985) 793–820. [CrossRef] [MathSciNet] [Google Scholar]
  23. P.-L. Lions, J.-L. Menaldi A.-S. Sznitman, Construction de processus de diffusion réfléchis par pénalisation du domaine. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 559–562. [Google Scholar]
  24. P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37 (1984) 511–537. [Google Scholar]
  25. Q. Liu, On game interpretations for the curvature flow equation and its boundary problems. University of Kyoto RIMS Kokyuroku 1633 (2009) 138–150. [Google Scholar]
  26. Y. Peres, O. Schramm, S. Sheffield and D.B. Wilson, Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22 (2009) 167–210. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.-H. Sato, Interface evolution with Neumann boundary condition. Adv. Math. Sci. Appl. 4 (1994) 249–264. [MathSciNet] [Google Scholar]
  28. H. Tanaka, Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9 (1979) 163–177. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.