Free Access
Issue
ESAIM: COCV
Volume 19, Number 4, October-December 2013
Page(s) 1166 - 1188
DOI https://doi.org/10.1051/cocv/2013049
Published online 13 August 2013
  1. S. Adams, N. Dirr, M.A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307 (2011) 791–815. [CrossRef] [Google Scholar]
  2. S. Adams, N. Dirr, M.A. Peletier and J. Zimmer, Large deviations and gradient flows. Philosophical Transactions of the Royal Society A. To appear (2013). [Google Scholar]
  3. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. In Lect. Math., ETH Zürich. Birkhauser, Basel, 2nd edition (2008). [Google Scholar]
  4. J.D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Braides, Gamma convergence for beginners. Oxford University Press, Oxford (2002). [Google Scholar]
  6. D.A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20 (1987) 247–308. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Dirr, V. Laschos and J. Zimmer, Upscaling from particle models to entropic gradient flows (submitted) (2010). [Google Scholar]
  8. R.M. Dudley, Real analysis and probability. Wadsworth and Brooks/Cole, Pacific Grove, CA, USA (1989). [Google Scholar]
  9. A. Dembo and O. Zeitouni, Large deviations techniques and applications, in Stoch. Model. Appl. Probab., vol. 38. Springer, New York, NY, USA, 2nd edition (1987). [Google Scholar]
  10. J. Feng and T.G. Kurtz, Large deviations for stochastic processes, in Mathematical surveys and monographs of vol. 131. AMS, Providence, RI, USA (2006). [Google Scholar]
  11. J. Feng and T. Nguyen, Hamilton-Jacobi equations in space of measures associated with a system of convervations laws. J. Math. Pures Appl. 97 (2011) 318–390. [CrossRef] [Google Scholar]
  12. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Léonard, A large deviation approach to optimal transport. arxiv:org/abs/0710.1461v1 (2007). [Google Scholar]
  14. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. [Google Scholar]
  15. M.A.Peletier, M. Renger and M. Veneroni, Variational formulation of the Fokker-Planck equation with decay: a particle approach. arxiv:org/abs/1108.3181 (2012). [Google Scholar]
  16. W. Rudin, Functional Analysis. McGraw-Hill, New York, NY, USA (1973). [Google Scholar]
  17. C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58. AMS, Providence (2003). [Google Scholar]
  18. C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer-Verlag, Berlin (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.