Free Access
Issue
ESAIM: COCV
Volume 19, Number 4, October-December 2013
Page(s) 1209 - 1224
DOI https://doi.org/10.1051/cocv/2013048
Published online 27 August 2013
  1. J.-M. Coron and S. Guerrero, Singular optimal control: a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237–257. [MathSciNet] [Google Scholar]
  2. P. Cornilleau and S. Guerrero, Controllability and observability of an artificial advection-diffusion problem. Math. Control Signals Syst. 24 (2012) 265–294 [CrossRef] [Google Scholar]
  3. R. Danchin, Poches de tourbillon visqueuses. J. Math. Pures Appl. 76 (1997) 609–647. [CrossRef] [Google Scholar]
  4. S. Dolecki and D. Russell, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185–220. [CrossRef] [MathSciNet] [Google Scholar]
  5. K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. Graduate texts in mathematics. Springer-Verlag (2000). [Google Scholar]
  6. A.V. Fursikov and O. Imanuvilov, Controllability of evolution equations. In Lect. Notes Ser. vol. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  7. O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852–868. [CrossRef] [MathSciNet] [Google Scholar]
  8. O. Glass and S. Guerrero, Uniform controllability of a transport equation in zero diffusion-dispersion limit. M3AS 19 (2009) 1567–1601. [Google Scholar]
  9. P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, London (1985). [Google Scholar]
  10. S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation. Commun. Partial Differ. Equ. 32 (2007) 1813–1836. [Google Scholar]
  11. L. Halpern, Artificial boundary for the linear advection diffusion equation. Math. Comput. 46 (1986) 425–438. [CrossRef] [Google Scholar]
  12. L. Miller, On the null-controllability of the heat equation in unbounded domains. Bull. Sci. Math. 129 (2005) 175–185. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.