Free Access
Issue
ESAIM: COCV
Volume 19, Number 4, October-December 2013
Page(s) 1189 - 1208
DOI https://doi.org/10.1051/cocv/2013051
Published online 27 August 2013
  1. R. Buckdahn, P. Cardaliaguet and M. Quincampoix, Some recent aspects of differential game theory. Dynamic Games Appl. 1 (2011) 74–114 [Google Scholar]
  2. R. Buckdahn, P. Cardaliaguet and C. Rainer, Nash equilibrium payoffs for nonzero-sum Stochastic differential games. SIAM J. Control Optim. 43 (2004) 624–642. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations. arXiv:math/0702131. [Google Scholar]
  4. R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations arXiv:0707.1133. [Google Scholar]
  5. N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. [CrossRef] [MathSciNet] [Google Scholar]
  6. N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equation in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
  7. W.H. Fleming, P.E. Souganidis, On the existence of value functions of twoplayer, zero-sum stochastic differential games. Indiana Univ. Math. J. 38 (1989) 293–314. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Hamadène, J. Lepeltier and A. Matoussi, Double barrier backward SDEs with continuous coefficient. In Backward Stochastic Differential Equations. Pitman Res. Notes Math. Ser., vol. 364. Edited by El Karoui Mazliak (1997) 161–175. [Google Scholar]
  9. Q. Lin, A BSDE approach to Nash equilibrium payoffs for stochastic differential games with nonlinear cost functionals. Stochastic Process. Appl. 122 (2012) 357–385. [Google Scholar]
  10. Q. Lin, Nash equilibrium payoffs for stochastic differential games with jumps and coupled nonlinear cost functionals. arXiv:1108.3695v1. [Google Scholar]
  11. S. Peng, Backward stochastic differential equations–stochastic optimization theory and viscosity solutions of HJB equations, in Topics Stoch. Anal., edited by J. Yan, S. Peng, S. Fang and L. Wu., Ch. 2 (Chinese vers.) (1997). [Google Scholar]
  12. Z. Wu and Z. Yu, Dynamic programming principle for one kind of stochastic recursive optimal control problem and Hamilton-Jacobi-Bellman equation. arXiv:0704.3775. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.