Free Access
Issue
ESAIM: COCV
Volume 20, Number 1, January-March 2014
Page(s) 1 - 22
DOI https://doi.org/10.1051/cocv/2013050
Published online 29 August 2013
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. Clarendon Press, Oxford (2000). [Google Scholar]
  2. L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces. Oxford Lect. Ser. Math. Appl. Oxford University Press, Oxford (2004) [Google Scholar]
  3. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999) 428–517. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Friedlander, Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier 55 (2005) 199–211. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Gnutzmann and U. Smilansky, Quantum graphs: Applications to quantum chaos and universal spectral statistics. Adv. Phys. 55 (2006) 527–625. [CrossRef] [Google Scholar]
  6. P. Kuchment, Quantum graphs: an introduction and a brief survey, in Analysis on graphs and its applications. AMS Proc. Symp. Pure. Math. 77 (2008) 291–312. [CrossRef] [Google Scholar]
  7. F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems. Cambridge University Press, Cambridge (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.