Free Access
Issue
ESAIM: COCV
Volume 20, Number 1, January-March 2014
Page(s) 222 - 235
DOI https://doi.org/10.1051/cocv/2013062
Published online 27 January 2014
  1. S. Aniţa and V. Barbu, Null controllability of nonlinear convective heat equation. ESAIM: COCV 5 (2000) 157–173. [CrossRef] [EDP Sciences] [Google Scholar]
  2. V. Barbu, Exact controllability of the superlinear heat equations. Appl. Math. Optim. 42 (2000) 73–89. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Barbu, Controllability of parabolic and Navier-Stokes equations. Scientiae Mathematicae Japonicae 56 (2002) 143–211. [MathSciNet] [Google Scholar]
  4. V. Barbu and G. Da Prato, The Neumann problem on unbounded domains of Rd and stochastic variational inequalities. Commun. Partial Differ. Eq. 11 (2005) 1217–1248. [CrossRef] [Google Scholar]
  5. V. Barbu and G. Da Prato, The generator of the transition semigroup corresponding to a stochastic variational inequality. Commun. Partial Differ. Eq. 33 (2008) 1318–1338. [CrossRef] [Google Scholar]
  6. V.I. Bogachev, N.V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Commun. Partial Differ. Eq. 26 (2001) 11–12. [Google Scholar]
  7. E. Cepá, Multivalued stochastic differential equations. C.R. Acad. Sci. Paris, Ser. 1, Math. 319 (1994) 1075–1078. [Google Scholar]
  8. A. Dubova, E. Fernandez Cara and M. Burges, On the controllability of parabolic systems with a nonlinear term involving state and gradient. SIAM J. Control Optim. 41 (2002) 718–819. [Google Scholar]
  9. A. Dubova, A. Osses and J.P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous coefficients. ESAIM: COCV 8 (2002) 621–667. [CrossRef] [EDP Sciences] [Google Scholar]
  10. E. Fernandez Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [CrossRef] [Google Scholar]
  11. E. Fernandez Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, vol. 17 of Annales de l’Institut Henri Poincaré (C) Nonlinear Analysis (2000) 583–616. [Google Scholar]
  12. A. Fursikov, Imanuvilov and O. Yu, Controllability of Evolution Equations, Lecture Notes #34. Seoul National University Korea (1996). [Google Scholar]
  13. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Eq. 30 (1995) 335–357. [CrossRef] [Google Scholar]
  14. J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applicatiosn to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712–747. [CrossRef] [EDP Sciences] [Google Scholar]
  15. J. Le Rousseau and L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaqces. Inventiones Mathematicae 183 (2011) 245–336. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line. Trans. AMS 353 (2000) 1635–1659. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space. Part. Math. 58 (2001) 1–24. [Google Scholar]
  18. L. Miller, Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett. 12 (2005) 37–47. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, N.Y. (1970). [Google Scholar]
  20. C. Zalinescu, Convex Analysis in General Vector Spaces. World Scientific Publishing, River Edge, N.Y. (2002). [Google Scholar]
  21. Zhang, Xu, A unified controllability/observability theory for some stochastic and deterministic partial differential equations, Proc. of the International Congress of Mathematicians, vol. IV, 3008-3034. Hindustan Book Agency, New Delhi (2010). [Google Scholar]
  22. X. Zhang and E. Zuazua, On the optimality of the observability inequalities for Kirchoff plate systems with potentials in unbounded domains, in Hyperbolic Prloblems: Theory, Numerics and Applications, edited by S. Benzoni-Gavage and D. Serre. Springer (2008) 233–243. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.