Free Access
Issue
ESAIM: COCV
Volume 20, Number 1, January-March 2014
Page(s) 236 - 268
DOI https://doi.org/10.1051/cocv/2013063
Published online 27 January 2014
  1. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, vol. 87 of Encyclopaedia Math. Sci. Springer-Verlag, Berlin (2004). [Google Scholar]
  2. F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci. 18 (2008) 277–302. [Google Scholar]
  3. H. Brenner. The stokes resistance of a slightly deformed sphere. Chem. Engrg. Sci. 19 (1964) 519–539. [CrossRef] [Google Scholar]
  4. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). [Google Scholar]
  5. T. Chambrion and A. Munnier, Locomotion and control of a self-propelled shape-changing body in a fluid. J. Nonlinear Sci. 21 (2011) 325–385. [Google Scholar]
  6. T. Chambrion and A. Munnier, Generic controllability of 3d swimmers in a perfect fluid. SIAM J. Control Optim. 50 (2012) 2814–2835. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Childress, Mechanics of swimming and flying, vol. 2 of Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge (1981). [Google Scholar]
  8. V. Girault and A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions. Arch. Rational Mech. Anal. 114 (1991) 313–333. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Happel and H. Brenner, Low Reynolds number hydrodynamics with special applications to particulate media. Prentice-Hall Inc., Englewood Cliffs, N.J. (1965). [Google Scholar]
  10. H. Lamb, Hydrodynamics. Cambridge Mathematical Library. 6th edition. Cambridge University Press, Cambridge, (1993). [Google Scholar]
  11. J. Lighthill, Mathematical biofluiddynamics. Society for Industrial and Applied Mathematics. Philadelphia, Pa. (1975). [Google Scholar]
  12. M.J. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5 (1952) 109–118. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Maso, A. DeSimone and M. Morandotti, An existence and uniqueness result for the motion of self-propelled microswimmers. SIAM J. Math. Anal. 43 (2011) 1345–1368. [CrossRef] [MathSciNet] [Google Scholar]
  14. E.M. Purcell, Life at low reynolds number. Amer. J. Phys. 45 (1977) 3–11. [Google Scholar]
  15. T. Roubíček, Nonlinear partial differential equations with applications, vol. 153 of Internat. Ser. Numer. Math. Birkhäuser Verlag, Basel (2005). [Google Scholar]
  16. A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number. J. Fluid Mech. 198 (1989) 557–585. [Google Scholar]
  17. J. Simon, Domain variation for drag in stokes flow, in vol. 159 of Control Theory of Distributed Parameter Systems and Applications, Lecture Notes in Control and Information Sciences, edited by X. Li and J. Yong. Springer Berlin/Heidelberg (1991) 28–42. [Google Scholar]
  18. G. Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond., Ser. A 209 (1951) 447–461. [Google Scholar]
  19. E.F. Whittlesey, Analytic functions in Banach spaces. Proc. Amer. Math. Soc. 16 (1965) 1077–1083. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.