Free Access
Issue
ESAIM: COCV
Volume 20, Number 2, April-June 2014
Page(s) 416 - 441
DOI https://doi.org/10.1051/cocv/2013069
Published online 07 March 2014
  1. J.A. Atwell and B.B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33 (2001) 1–19. [CrossRef] [Google Scholar]
  2. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000) 113–132. [Google Scholar]
  3. R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods, in Proc. of ENUMATH-97. World Scientific Publishing (1998) 621–637. [Google Scholar]
  4. L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32 (2010) 997–1019. [CrossRef] [Google Scholar]
  5. L. Dedè, Reduced basis method for parametrized elliptic advection-reaction problems. J. Comput. Math. 28 (2010) 122–148. [Google Scholar]
  6. L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50 (2012) 287–305. [CrossRef] [Google Scholar]
  7. A.-L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. Accepted in SIAM J. Sci. Comput. (2012). [Google Scholar]
  8. M.A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Math. 349 (2011) 873–877. [Google Scholar]
  9. M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41 (2007) 575–605. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473–478. [Google Scholar]
  12. K. Ito and K. Kunisch, Reduced-order optimal control based on approximate inertial manifolds for nonlinear dynamical systems. SIAM J. Numer. Anal. 46 (2008) 2867–2891. [CrossRef] [Google Scholar]
  13. K. Ito and S.S. Ravindran, A reduced basis method for control problems governed by pdes, in Control and Estimation of Distributed Parameter Systems, vol. 126 of Internat. Series Numer. Math., edited by W. Desch, F. Kappel and K. Kunisch. Birkhäuser Basel (1998) 153–168. [Google Scholar]
  14. K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403–425. [CrossRef] [MathSciNet] [Google Scholar]
  15. K. Ito and S.S. Ravindran, A reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15 (2001) 97–113. [Google Scholar]
  16. M. Kärcher, The reduced-basis method for parametrized linear-quadratic elliptic optimal control problems, Master’s thesis. Technische Universität München (2011). [Google Scholar]
  17. K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999) 345–371. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Kunisch, S. Volkwein and L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. System 3 (2004) 701–722. [Google Scholar]
  19. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer (1971). [Google Scholar]
  20. L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Math. 331 (2000) 153–158. [Google Scholar]
  21. F. Negri, Reduced basis method for parametrized optimal control problems governed by PDEs, Master’s thesis. Politecnico di Milano (2011). [Google Scholar]
  22. I.B. Oliveira, A “HUM” Conjugate Gradient Algorithm for Constrained Nonlinear Optimal Control: Terminal and Regulator Problems, Ph.D. thesis. Massachusetts Institute of Technology (2002). [Google Scholar]
  23. M. Paraschivoiu, J. Peraire and A.T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Symposium on Advances in Computational Mechanics. Comput. Methods Appl. Mechanics Engrg. 150 (1997) 289–312. [CrossRef] [Google Scholar]
  24. N.A. Pierce and M.B. Giles, Adjoint recovery of superconvergent functionals from pde approximations. SIAM Review 42 (2000) 247–264. [CrossRef] [MathSciNet] [Google Scholar]
  25. C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engrg. 124 (2002) 70–80. [Google Scholar]
  26. A. Quarteroni, T. Lassila, A. Manzoni and G. Rozza, Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM: M2AN 47 (2013) 1107–1131. [CrossRef] [EDP Sciences] [Google Scholar]
  27. A. Quarteroni, G. Rozza, L. Dedè and A. Quaini, Numerical approximation of a control problem for advection-diffusion processes, System Modeling and Optimization, in vol. 199 of IFIP International Federation for Information Processing. Edited by F. Ceragioli, A. Dontchev, H. Futura, K. Marti and L. Pandolfi. Springer (2006) 261–273. [Google Scholar]
  28. A.M. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23 of Springer Series in Comput. Math. Springer (2008). [Google Scholar]
  29. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15 (2008) 229–275. [Google Scholar]
  30. T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and pod a posteriori error estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Modell. Dyn. Syst. 17 (2011) 355–369. [Google Scholar]
  31. F. Tröltzsch and S. Volkwein, POD a posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83–115. [CrossRef] [Google Scholar]
  32. K. Veroy and A.T. Patera, Certifed real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Intern. J. Numer. Methods Fluids 47 (2005) 773–788. [Google Scholar]
  33. K. Veroy, C. Prud’homme, D.V. Rovas and A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proc. of the 16th AIAA Computational Fluid Dynamics Conference. AIAA Paper (2003) 2003–3847. [Google Scholar]
  34. K. Veroy, D.V. Rovas and A.T. Patera, A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “convex inverse” bound conditioners. Special volume: A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1007–1028. [CrossRef] [EDP Sciences] [Google Scholar]
  35. G. Vossen and S. Volkwein, Model reduction techniques with a posteriori error analysis for linear-quadratic optimal control problems, in vol. 298 of Konstanzer Schriften in Mathematik. Universität Konstanz (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.