Free Access
Issue |
ESAIM: COCV
Volume 20, Number 2, April-June 2014
|
|
---|---|---|
Page(s) | 442 - 459 | |
DOI | https://doi.org/10.1051/cocv/2013070 | |
Published online | 07 March 2014 |
- M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972). [Google Scholar]
- M.S. Ashbaugh and R. Benguria, Proof of the Payne−Pölya−Weinberger conjecture. Bull. Amer. Math. Soc. 25 (1991) 19–29. [Google Scholar]
- M.S. Ashbaugh and R. Benguria, Isoperimetric bound for λ3/λ2 for the membrane problem. Duke Math. J. 63 (1991) 333–341. [CrossRef] [MathSciNet] [Google Scholar]
- M. van den Berg, On Rayleigh’s formula for the first Dirichlet eigenvalue of a radial perturbation of a ball. J. Geometric Anal. 23 (2013) 1427–1440. [CrossRef] [Google Scholar]
- M. van den Berg and M. Iversen, On the minimization of Dirichlet eigenvalues of the Laplace operator. J. Geometric Anal. 23 (2013) 660–676. [CrossRef] [Google Scholar]
- L. Brasco, C. Nitsch and A. Pratelli, On the boundary of the attainable set of the Dirichlet spectrum. Z. Angew. Math. Phys. 64 (2013) 591–597. [CrossRef] [MathSciNet] [Google Scholar]
- D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Prog. Nonlinear Differ. Eq. Appl. Birkhäuser Verlag, Boston (2005). [Google Scholar]
- D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527–536. [CrossRef] [MathSciNet] [Google Scholar]
- D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985–996. [CrossRef] [Google Scholar]
- G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183–195. [CrossRef] [MathSciNet] [Google Scholar]
- R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2. Wiley-VCH, New York (1962). [Google Scholar]
- A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers Math. Birkhäuser Verlag, Basel (2006). [Google Scholar]
- D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. J. Math. Pures Appl. 100 (2013) 433–453. DOI: http://dx.doi.org/10.1016/j.matpur.2013.01.008. [CrossRef] [MathSciNet] [Google Scholar]
- B. Osting and C.-Y. Kao, Minimal convex combinations of three sequential Laplace−Dirichlet eigenvalues, Appl. Math. Optim. 69 (2014) 123–139. [CrossRef] [MathSciNet] [Google Scholar]
- S.A. Wolf, Asymptotic and Numerical Analysis of Linear and Nonlinear Eigenvalue Problems, Ph.D. Thesis. Stanford University (1993). [Google Scholar]
- S.A. Wolf and J.B. Keller, Range of the First Two Eigenvalues of the Laplacian. Proc. R. Soc. London A 447 (1994) 397–412. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.