Free Access
Issue
ESAIM: COCV
Volume 20, Number 2, April-June 2014
Page(s) 460 - 487
DOI https://doi.org/10.1051/cocv/2013071
Published online 07 March 2014
  1. H.W. Alt and L.A. Caffarelli, Existence and regularity results for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 107–144. [Google Scholar]
  2. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasi-convex integrals. Arch. Rational Mech. Anal. 99 (1987) 261–281. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Eq. 1 (1993) 55–69. [Google Scholar]
  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). [Google Scholar]
  6. E. Bombieri, Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 (1982) 99–130. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Carozza and A. Passarelli Di Napoli, A regularity theorem for minimisers of quasiconvex integrals: The case 1 < p < 2. Proc. Roy. Soc. Edinburgh A Math. 126, 6 (1996) 1181–1200. [CrossRef] [Google Scholar]
  8. L. Esposito and N. Fusco, A remark on a free interface problem with volume constraint. J. Convex Anal. 18 (2011) 417–426. [Google Scholar]
  9. L.C. Evans and F.R. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  10. I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Sci. Norm. Super. Pisa 24 (1997) 463–499. [Google Scholar]
  11. I. Fonseca, N. Fusco, G. Leoni and V. Millot, Material voids in elastic solids with anisotropic surface energies. J. Math. Pures Appl. 96 (2011). [Google Scholar]
  12. I. Fonseca, N. Fusco, G. Leoni and M. Morini, Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results. Arch. Rational Mech. Anal. 186 (2007) 477–537. [CrossRef] [Google Scholar]
  13. N. Fusco and J. Hutchinson, C1 partial regularity of functions minimising quasiconvex integrals. Manuscripta Math. 54 (1985) 121–143. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear ellyptic systems. Ann. Math. Stud. Princeton University Press (1983). [Google Scholar]
  15. M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 185–208. [Google Scholar]
  16. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 2nd edn., vol. 224 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1983). [Google Scholar]
  17. E. Giusti. Direct methods in the calculus of variations. World Scientific (2003). [Google Scholar]
  18. M. Gurtin, On phase transitions with bulk, interfacial, and boundary energy. Arch. Rational Mech. Anal. 96 (1986) 243–264 [MathSciNet] [Google Scholar]
  19. C.J. Larsen, Regularity of components in optimal design problems with perimeter penalization. Calc. Var. Partial Differ. Eq. 16 (2003) 17–29. [CrossRef] [Google Scholar]
  20. F.H. Lin, Variational problems with free interfaces. Calc. Var. Partial Differ. Eq. 1 (1993) 149–168. [CrossRef] [Google Scholar]
  21. F.H. Lin and R.V. Kohn, Partial regularity for optimal design problems involving both bulk and surface energies. Chin. Ann. Math. B 20, (1999) 137–158. [CrossRef] [Google Scholar]
  22. V. Šverák and X. Yan. Non-Lipschitz minimizers of smooth uniformly convex variational integrals. Proc. Natl. Acad. Sci. USA 99 (2002) 15269–15276. [CrossRef] [MathSciNet] [Google Scholar]
  23. I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334 (1982) 27–39. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.