Free Access
Volume 20, Number 2, April-June 2014
Page(s) 488 - 516
Published online 14 March 2014
  1. M. Krstić and A. Smyshlyaev, Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Control Lett. 57 (2008) 750–758. [CrossRef] [Google Scholar]
  2. D.B. Pietri and M. Krstić, Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica 45 (2009) 2074–2081. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Krstić, Compensating a string PDE in the actuation or sensing path of an unstable ODE. IEEE Trans. Automatic Control 54 (2009) 1362–1368. [Google Scholar]
  4. G.A. Susto and M. Krstić, Control of PDE-ODE cascades with Neumann interconnections. J. Franklin Institute 347 (2010) 284–314. [CrossRef] [Google Scholar]
  5. M. Krstić, Compensating actuator and sensor dynamics governed by diffusion PDEs. Syst. Control Lett. 58 (2009) 372–377. [CrossRef] [Google Scholar]
  6. J. Li and Y.G. Liu, Adaptive control of the ODE systems with uncertain diffusion-dominated actuator dynamics. Internat. J. Control 85 (2012) 868–879. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.X. Tang and C.K. Xie, Stabilization for a coupled PDE-ODE control system. J. Franklin Institute 348 (2011) 2142–2155. [CrossRef] [Google Scholar]
  8. S.X. Tang and C.K. Xie, State and output feedback boundary control for a coupled PDE-ODE system. Syst. Control Lett. 60 (2011) 540–545. [Google Scholar]
  9. Z.C. Zhou and S.X. Tang, Boundary stabilization of a coupled wave-ODE system. Proc. Chinese Control Conf. Yantai, China (2011) 1048–1052. [Google Scholar]
  10. A.A. Masoud and S.A. Masoud, A self-organizing, hybrid PDE-ODE structure for motion control in informationally-deprived situations. Proc. IEEE Conf. Decision Control. Tampa, Florida, USA (1998) 2535–2540. [Google Scholar]
  11. C.F. Baicu, C.D. Rahn and D.M. Dawson, Backstepping boundary control of flexible-link electrically driven gantry robots. IEEE/ASME Trans. Mechatr. 3 (1998) 60–66. [CrossRef] [Google Scholar]
  12. O. Morgul, Orientation and stabilization of a flexible beam attached to a rigid body: planar motion. IEEE Trans. Autom. Control 36 (1991) 953–962. [CrossRef] [Google Scholar]
  13. D.M. Dawson, J.J. Carroll and M. Schneider, Integrator backstepping control of a brush DC motor turning a robotic load. IEEE Trans. Control Syst. Technol. 2 (1994) 233–244. [Google Scholar]
  14. D.B. Chentouf, A note on stabilization of a hybrid PDE-ODE system. Proc. IEEE Conf. Decision Control. Orlando, Florida, USA (2001) 137–142. [Google Scholar]
  15. B. d’Andrea-Novel and J.M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36 (2000) 587–593. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. d’Andrea-Novel, F. Boustany, F. Conrad and B.P. Rao, Feedback stabilization of a hybrid PDE-ODE systems: application to an overhead crane. Math. Control, Signals, Syst. 7 (1994) 1–22. [Google Scholar]
  17. C. Panjapornpon, P. Limpanachaipornkul and T. Charinpanitkul, Control of coupled PDEs-ODEs using input-output linearization: application to cracking furnace. Chemical Engrg. Sci. 75 (2012) 144–151. [CrossRef] [Google Scholar]
  18. M. Krstić and A. Smyshlyaev, Adaptive boundary control for unstable parabolic PDEs-part I: Lyapunov design. IEEE Trans. Automatic Control 53 (2008) 1575–1591. [Google Scholar]
  19. W.Y. Yang, W. Cao, T.S. Chung and J. Morris, Appl. Numer. Methods Using Matlab. John Wiley & Sons, Hoboken, New Jersey (2005). [Google Scholar]
  20. K.D. Do and J. Pan, Boundary control of three-dimensional inextensible marine risers. J. Sound and Vibration 327 (2009) 299–321. [CrossRef] [Google Scholar]
  21. Y.Y. Cao and J. Lam, Robust H control of uncertain markovian jump systems with time-delay. IEEE Trans. Autom. Control 45 (2000) 77–83. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.