Free Access
Volume 20, Number 2, April-June 2014
Page(s) 517 - 523
Published online 27 March 2014
  1. E. Acerbi, V. Chiadò Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992) 481–496. [Google Scholar]
  2. S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids. Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990) 67–90. [Google Scholar]
  3. A. Braides, Gamma-convergence for beginners, vol. 22 of Oxford Lect. Ser. Math. Appl. Oxford University Press, New York (2002). [Google Scholar]
  4. I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89–102. [CrossRef] [MathSciNet] [Google Scholar]
  5. M.E. Gurtin, Some results and conjectures in the gradient theory of phase transitions. IMA, preprint 156 (1985). [Google Scholar]
  6. G. Leoni, A first course in Sobolev spaces, vol. 105 of Graduate Stud. Math. American Mathematical Society (AMS), Providence, RI (2009). [Google Scholar]
  7. L. Modica and S. Mortola, Un esempio di Γ-convergenza. (Italian). Boll. Un. Mat. Ital. B 14 (1977) 285–299. [MathSciNet] [Google Scholar]
  8. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101 (1988) 209–260. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.