Free Access
Volume 20, Number 4, October-December 2014
Page(s) 983 - 1008
Published online 04 August 2014
  1. L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191–246. [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lect. Math. ETH Zürich. Birkhäuser Verlag, Basel (2005). [Google Scholar]
  3. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105–123. [MathSciNet] [Google Scholar]
  4. J.-F. Babadjian and V. Millot, Unilateral gradient flow of the Ambrosio-Tortorelli functional by minimizing movements (2012). [Google Scholar]
  5. B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Bourdin, G.A. Francfort and J.-J. Marigo, The variational approach to fracture. J. Elasticity 91 (2008) 5–148. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Braides, Γ-convergence for beginners. Oxford University Press, Oxford (2002). [Google Scholar]
  8. A. Braides, Local Minimization, Variational Evolution and Γ-convergence, vol. 2094 of Lect. Notes Math. Springer, Berlin (2013). [Google Scholar]
  9. A. Chambolle, A density result in two-dimensional linearized elasticity and applications. Arch. Ration. Mech. Anal. 167 (2003) 211–233. [Google Scholar]
  10. A. Chambolle, G.A. Francfort and J.-J. Marigo, Revisiting Energy Release Rates in Brittle Fracture. J. Nonlinear Sci. 20 (2010) 395–424. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  12. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization. Math. Models Methods Appl. Sci. 12 (2002) 1773–1799. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101–135. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Dal Maso and R. Toader, On a notion of unilateral slope for the Mumford-Shah functional. NoDEA Nonlin. Differ. Equ. Appl. 13 (2007) 713–734. [Google Scholar]
  15. E. De Giorgi, New problems on minimizing movements. In Boundary value problems for partial differential equations and applications. RMA Res. Notes Appl. Math. Masson, Paris (1993) 81–98. [Google Scholar]
  16. M.A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. [Google Scholar]
  17. G.A. Francfort and C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56 (2003) 1465–1500. [Google Scholar]
  18. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Differ. Equ. 22 (2005) 129–172. [Google Scholar]
  20. D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18 (2008) 1529–1569. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model (2013). [Google Scholar]
  22. C.J. Larsen, Epsilon-stable quasi-static brittle fracture evolution. Comm. Pure Appl. Math. 63 (2010) 630–654. [MathSciNet] [Google Scholar]
  23. C.J. Larsen, C. Ortner and E. Süli, Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20 (2010) 1021–1048. [CrossRef] [Google Scholar]
  24. A. Mielke, Evolution of rate-independent systems, volume Evolutionary equations. Handb. Differ. Equ. Elsevier, Amsterdam (2005) 461–559. [Google Scholar]
  25. A. Mielke, Differential, energetic, and metric formulations for rate-independent processes. In Nonlinear PDE’s and applications, vol. 2028 of Lecture Notes in Math. Springer, Heidelberg (2011) 87–170. [Google Scholar]
  26. A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25 (2009) 585–615. [Google Scholar]
  27. A. Mielke, R. Rossi, and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. [CrossRef] [EDP Sciences] [Google Scholar]
  28. A. Mielke, R. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80 (2012) 381–410. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31 (2008) 387–416. [Google Scholar]
  30. M. Negri, From phase-field to sharp cracks: convergence of quasi-static evolutions in a special setting. Appl. Math. Lett. 26 (2013) 219–224. [CrossRef] [Google Scholar]
  31. M. Negri and C. Ortner, Quasi-static propagation of brittle fracture by Griffith’s criterion. Math. Models Methods Appl. Sci. 18 (2008) 1895–1925. [CrossRef] [MathSciNet] [Google Scholar]
  32. C. Ortner, Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal. 38 (2006) 1214–1234. [CrossRef] [MathSciNet] [Google Scholar]
  33. R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV 12 (2006) 564–614. [CrossRef] [EDP Sciences] [Google Scholar]
  34. E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Comm. Pure Appl. Math. 57 (2004) 1627–1672. [CrossRef] [MathSciNet] [Google Scholar]
  35. S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31 (2011) 1427–1451. [Google Scholar]
  36. P. Sicsic and J.-J. Marigo, From gradient damage laws to Griffith’s theory of crack propagation. J. Elasticity 113 (2013) 55–74. [CrossRef] [MathSciNet] [Google Scholar]
  37. U. Stefanelli, A variational characterization of rate-independent evolution. Math. Nach. 282 (2009) 1492–1512. [Google Scholar]
  38. R. Toader and C. Zanini, An artificial viscosity approach to quasi-static crack growth. Boll. Unione Mat. Ital. 2 (2009) 1–35. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.