Free Access
Volume 20, Number 4, October-December 2014
Page(s) 1009 - 1024
Published online 13 August 2014
  1. D. Araujo, G. Ricarte and E. Teixeira, Optimal gradient continuity for degenerate elliptic equations. Preprint arXiv:1206.4089. [Google Scholar]
  2. G. Barles, E. Chasseigne and C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. 13 (2011) 1–26. [CrossRef] [Google Scholar]
  3. I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators. Ann. Fac. Sci Toulouse Math. 13 (2004) 261–287. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Birindelli and F. Demengel, Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Commun. Pure Appl. Anal. 6 (2007) 335–366. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Birindelli and F. Demengel, Regularity and uniqueness of the first eigenfunction for singular fully non linear operators. J. Differ. Eqs. 249 (2010) 1089–1110. [CrossRef] [Google Scholar]
  6. I. Birindelli and F. Demengel, Regularity results for radial solutions of degenerate elliptic fully non linear equations. Nonlinear Anal. 75 (2012) 6237–6249. [CrossRef] [MathSciNet] [Google Scholar]
  7. X. Cabré and L. Caffarelli, Regularity for viscosity solutions of fully nonlinear equations F(D2u) = 0. Topological Meth. Nonlinear Anal. 6 (1995) 31–48. [Google Scholar]
  8. L. Caffarelli, Interior a Priori Estimates for Solutions of Fully Nonlinear Equations. Ann. Math. Second Ser. 130 (1989) 189–213. [CrossRef] [Google Scholar]
  9. L. Caffarelli and X. Cabré, Fully-nonlinear equations Colloquium Publications. Amer. Math. Soc. Providence, RI 43 (1995). [Google Scholar]
  10. M.G. Crandall, H. Ishii and P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. [Google Scholar]
  11. L.C. Evans, Classical Solutions of Fully Nonlinear, Convex, Second-Order Elliptic Equations. Commun. Pure Appl. Math. 25 (1982) 333–363. [CrossRef] [Google Scholar]
  12. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). [Google Scholar]
  13. C. Imbert, Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations. J. Differ. Eqs. 250 (2011) 1555–1574. [CrossRef] [Google Scholar]
  14. C. Imbert and L. Silvestre, C1 regularity of solutions of degenerate fully non-linear elliptic equations. Adv. Math. 233 (2013) 196–206. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Imbert and L. Silvestre, Estimates on elliptic equations that hold only where the gradient is large. Preprint arxiv:1306.2429v2. [Google Scholar]
  16. H. Ishii and P.L. Lions, Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations. J. Differ. Eqs. 83 (1990) 26–78. [Google Scholar]
  17. S. Patrizi, The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl. 90 (2008) 286–311. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Silvestre and B. Sirakov, Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Preprint arXiv:1306.6672v1. [Google Scholar]
  19. N. Winter, W2,p and W1,p-Estimates at the Boundary for Solutions of Fully Nonlinear, Uniformly Elliptic Equations. J. Anal. Appl. 28 (2009) 129–164. [Google Scholar]
  20. N.S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations. In Partial differential equations and the calculus of variations. II, vol. 2 of Progr. Nonlinear Differ. Eqs. Appl. Birkhauser Boston, Boston, MA (1989) 939–957. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.