Free Access
Issue |
ESAIM: COCV
Volume 20, Number 4, October-December 2014
|
|
---|---|---|
Page(s) | 1025 - 1058 | |
DOI | https://doi.org/10.1051/cocv/2014006 | |
Published online | 05 August 2014 |
- H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22 (2012) 1150013. [CrossRef] [MathSciNet] [Google Scholar]
- G. Allaire, Optimization by the Homogenization Method. Springer, Berlin (2002). [Google Scholar]
- G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level set method. J. Comput. Phys. 194 (2004) 363–393. [CrossRef] [Google Scholar]
- S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn−Hillard fluids. Ann. Inst. Henri Poincaré 7 (1990) 67–90. [Google Scholar]
- J.W. Barrett, H. Garcke and R. Nürnberg, On sharp interface limits of Allen−Cahn/Cahn−Hilliard variational inequalities. Discrete Contin. Dyn. Syst. Ser. S1 (2008) 1–14. [Google Scholar]
- J.W. Barrett, R. Nürnberg and V. Styles, Finite Element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 46 (2004) 738–772. [CrossRef] [MathSciNet] [Google Scholar]
- M.P. Bendsoe and O. Sigmund, Topology Optimization. Springer, Berlin (2003). [Google Scholar]
- L. Blank, H. Garcke, L. Sarbu and V. Styles, Non-local Allen-Cahn systems: analysis and a primal dual active set method. IMA J. Numer. Anal. 33 (2013) 1126–1155. [CrossRef] [MathSciNet] [Google Scholar]
- L. Blank, H. Garcke, L. Sarbu, T. Srisupattarawanit, V. Styles and A. Voigt, Phase-field approaches to structural topology optimization. Constrained Optim. Opt. Control for Partial Differ. Eqs., edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. In vol. 160, Int. Ser. Numer. Math. (2012) 245–255. [Google Scholar]
- J.F. Blowey and C.M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems. IMA J. Math. Appl. 47 (1993) 19–60. [Google Scholar]
- B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV 9 (2003) 19–48. [CrossRef] [EDP Sciences] [Google Scholar]
- B. Bourdin and A. Chambolle, The phase-field method in optimal design, in vol. 137 of IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials (2006) 207–215. [Google Scholar]
- L. Bronsard, H. Garcke and B. Stoth, A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretization for the geometric evolution problem. SIAM J. Appl. Math. 60 (1999) 295–315. [CrossRef] [MathSciNet] [Google Scholar]
- L. Bronsard, C. Gui and M. Schatzman, A three layered minimizer in R2 for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math. 47 (1996) 677–715. [CrossRef] [Google Scholar]
- L. Bronsard and R. Reitich, On singular three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation. Arch. Rat. Mech. Anal. 124 (1993) 355–379. [CrossRef] [Google Scholar]
- M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006) 1447–1466. [CrossRef] [MathSciNet] [Google Scholar]
- M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound. 5 (2003) 301–332. [CrossRef] [MathSciNet] [Google Scholar]
- M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods. J. Comput. Phys. 194 (2004) 344–362. [CrossRef] [MathSciNet] [Google Scholar]
- J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. [CrossRef] [Google Scholar]
- L.Q. Chen, Phase-field models for microstructure evolution. Ann. Rev. Mater. Research 32 (2002) 113–140. [CrossRef] [Google Scholar]
- P.G. Ciarlet, Mathematical Elasticity, Three Dimensional Elasticity, vol. 1. Elsevier (1988). [Google Scholar]
- T.A. Davis, UMFPACK Version 5.2.0 User Guide. University of Florida (2007). [Google Scholar]
- K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric pdes and mean curvature flow. Acta Numerica (2005) 139–232. [Google Scholar]
- L. Dedè, M.J. Borden, T.J.R. Hughes, Isogeometric analysis for topology optimization with a phase field model, Arch. Comput. Methods Eng. 19 (2012) 427–465. [CrossRef] [MathSciNet] [Google Scholar]
- C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB256, Preprint 195, University Bonn (1999). [Google Scholar]
- P.C. Fife, Dynamics of internal layers and diffusive interfaces. Vol. 53 of CBMS-NSF Regional Conf. Ser. Appl. Math. SIAM, Philadelphia (1988). [Google Scholar]
- P.C. Fife and O. Penrose, Interfacial dynamics for thermodynamically consistent phase-field models with nonconserved order parameter. EJDE (1995) 1–49. [Google Scholar]
- P. Fratzl, O. Penrose and J.L. Lebowitz, Modeling of phase separation in alloys with coherent elastic misfit. J. Statist. Phys. 95 (1999). [Google Scholar]
- H. Garcke, The Γ-limit of the Ginzburg-Landau energy in an elastic medium. AMSA 18 (2008) 345–379. [Google Scholar]
- H. Garcke, On Cahn−Hilliard systems with elasticity. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 307–331. [CrossRef] [MathSciNet] [Google Scholar]
- H. Garcke, B. Nestler and B. Stoth, On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys. D 115 (1998) 87–108. [Google Scholar]
- H. Garcke, B. Nestler and B. Stoth, A multi phase field concept: numerical simulations for moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60 (1999) 295–315. [CrossRef] [MathSciNet] [Google Scholar]
- H. Garcke and A. Novick-Cohen, A singular limit for a system of degenerate Cahn−Hilliard equations. Adv. Differ. Eqs. 5 (2000) 401–434. [Google Scholar]
- H. Garcke, R. Nürnberg, V. Styles, Stress and diffusion induced interface motion: Modelling and numerical simulations. Eur. J. Appl. Math. 18 (2007) 631–657. [CrossRef] [Google Scholar]
- H. Garcke and B. Stinner, Second order phase field asymptotics for multicomponent systems. Interfaces Free Boundaries 8 (2006) 131–157. [CrossRef] [Google Scholar]
- M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Edizioni della normale, Scuola Normale Superiore Pisa (2005). [Google Scholar]
- M.E. Gurtin. An introduction to continuum mechanics. Math. Sci. Engrg. 158 (2003). [Google Scholar]
- I. Hlavacek and J. Necas, On inequalities of Korn’s type, I. Boundary value problems for elliptic systems of partial differential equations. Arch. Rat. Mech. Anal. 36 (1970) 312–334. [CrossRef] [Google Scholar]
- F.C. Larché and J.W. Cahn, The effect of self-stress on diffusion in solids. Acta Metall. 30 (1982) 1835–1845. [Google Scholar]
- L. Modica, The gradient theory of phase transitions and minimal interface criterion. Arch. Rat. Mech. Anal. 98 (1987) 123–142. [Google Scholar]
- F. Murat and S. Simon, Etudes des problèmes d’optimal design. Lect. Notes Comput. Sci. Springer Verlag, Berlin 41 (1976) 54–62. [Google Scholar]
- A. Novick-Cohen and L. Peres Hari, Geometric motion for a degenerate Allen−Cahn/Cahn−Hillard system: The partial wetting case. Physica D 209 (2005) 205–235. [CrossRef] [Google Scholar]
- O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and homogenization. In vol. 26 of Studies Math. Appl. (1992) 1–398. [Google Scholar]
- S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2011) 272–288. [Google Scholar]
- S.J. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- N. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Roc. Roy. Soc. London A 429 (1990) 505–532. [Google Scholar]
- J. Petersson, Some convergence results in perimeter-controlled topology optimization. Comput. Meth. Appl. Mech. Eng. 171 (1999) 123–140. [CrossRef] [MathSciNet] [Google Scholar]
- O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York (1984). [Google Scholar]
- J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math. 48 (1992) 249–264. [CrossRef] [MathSciNet] [Google Scholar]
- P. Penzler, M. Rumpf and B. Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM: COCV 18 (2012) 229–258. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Schmidt and K.G. Siebert, Design and adaptive finite element software. The finite element toolbox ALBERTA. In vol. 42 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2005). [Google Scholar]
- O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multidisc Optim. 16 (1998) 68–75. [Google Scholar]
- J. Simon, Differentiation with respect to domain boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649–687. [CrossRef] [MathSciNet] [Google Scholar]
- J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitivity analysis, vol. 10. Springer Ser. Comput. Math. Springer, Berlin (1992). [Google Scholar]
- A. Takezawa, S. Nishiwaki and M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys. 229 (2010) 2697–2718. [CrossRef] [Google Scholar]
- F. Tröltzsch, Optimal control of partial differential equations: theory, methods and applications, vol. 112. Graduate Studies Math. (2010). [Google Scholar]
- J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (in Dutch), Vol. 1. Verhaendel. Kronik. Akad. Weten. Amsterdam (1983); Engl. translation by J.S. Rowlinson. J. Stat. Phys. 20 (1979) 197–244. [Google Scholar]
- M. Wallin and M. Ristinmaa, Howard’s algorithm in a phase-field topology optimization approach. Int. J. Numer. Meth. Eng. 94 (2013) 43–59. [CrossRef] [Google Scholar]
- M.Y. Wang and S.W. Zhou, Phase field: A variational method for structural topology optimization. Comput. Model. Eng. Sci. 6 (2004) 547–566. [Google Scholar]
- M.Y. Wang and S.W. Zhou, Multimaterial structural topology optimization with a generalized Cahn−Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89-111. [Google Scholar]
- M.Y. Wang and S.W. Zhou, 3D multi-material structural topology optimization with the generalized Cahn−Hilliard equations. Comput. Model. Eng. Sci. 16 (2006) 83–102. [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed-point theorems. Springer-Verlag (1986). [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications, IV. Applications Math. Phys. Springer Verlag (1988). [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B. Nonlinear Monotone Operators. Springer Verlag (1990). [Google Scholar]
- J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.