Free Access
Volume 20, Number 4, October-December 2014
Page(s) 1059 - 1077
Published online 04 August 2014
  1. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati equations in control and systems theory. Systems and Control: Foundations and Applications. Birkhäuser Verlag, Basel (2003). [Google Scholar]
  2. G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion. Comput. Methods Appl. Mech. Engrg. 187 (2000) 91–117. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire and A. Piatnitski, Uniform spectral asymptotics for singularly perturbed locally periodic operators. Commun. Partial Differ. Eq. 27 (2002) 705–725. [Google Scholar]
  4. G. Allaire, I. Pankratova and A. Piatnitski, Homogenization and concentration for a diffusion equation with large convection in a bounded domain. J. Funct. Anal. 262 (2012) 300–330. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Allaire and A.-L. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344 (2007) 523–528. [CrossRef] [MathSciNet] [Google Scholar]
  6. D.G. Aronson, Non-negative solutions of linear parabolic equations. Annal. Scuola Norm. Sup. Pisa 22 (1968) 607–694. [Google Scholar]
  7. Y. Capdeboscq, Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Ser. I Math. 327 (1998) 807–812. [Google Scholar]
  8. I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton−Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643–683. [Google Scholar]
  9. P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms. Multi scale problems and asymptotic analysis. Vol. 24, GAKUTO Int. Ser. Math. Sci. Appl. Gakkotosho, Tokyo (2006) 153–165. [Google Scholar]
  10. Yu. Kifer, On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles. J. Differ. Eqs. 37 (1980) 108–139. [CrossRef] [Google Scholar]
  11. O.A. Ladyzhenskaya, V.A.Solonnikov and N.N. Uraltzeva, Linear and Quasi-linear Equations of Parabolic Type. AMS (1988). [Google Scholar]
  12. A. Piatnitski, Asymptotic Behaviour of the Ground State of Singularly Perturbed Elliptic Equations. Commun. Math. Phys. 197 (1998) 527–551. [CrossRef] [Google Scholar]
  13. A. Piatnitski and V. Rybalko, On the first eigenpair of singularly perturbed operators with oscillating coefficients. Preprint available at, arXiv:1206.3754. [Google Scholar]
  14. L.C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equation with small noise intensities. Ann. Inst. Henri Poincaré 2 (1985) 1–20. [Google Scholar]
  15. H. Mitake, Asymptotic solutions of Hamilton−Jacobi equations with state constraints. Appl. Math. Optim. 58 (2008) 393–410. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Ishii and H. Mitake, Representation formulas for solutions of Hamilton−Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56 (2007) 2159–2183. [CrossRef] [MathSciNet] [Google Scholar]
  17. M.H. Protter and H.F. Weinberger, On the spectrum of general second order operators. Bull. Amer. Math. Soc. 72 (1966) 251–255. [CrossRef] [MathSciNet] [Google Scholar]
  18. A.L. Pyatnitskii and A.S. Shamaev, On the asymptotic behavior of the eigenvalues and eigenfunctions of a nonselfadjoint operator in Rn. (Russian) Tr. Semin. Im. I.G. Petrovskogo 23 (2003) 287–308, 412; translation in J. Math. Sci. 120 (2004) 1411–1423. [Google Scholar]
  19. M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, vol. 260. Fundamental Principles Math. Sci. Springer-Verlag, New York (1984). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.