Free Access
Volume 20, Number 4, October-December 2014
Page(s) 1078 - 1122
Published online 13 August 2014
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125–145. [Google Scholar]
  2. G. Alberti, Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 239–274. [Google Scholar]
  3. G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in Rn, Math. Z. 230 (1999) 259–316. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Amar and V. De Cicco, Quasi-polyhedral approximation of BV-functions. Ric. Mat. 54 (2005) 485–490 (2006). [Google Scholar]
  5. L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857–881. [MathSciNet] [Google Scholar]
  6. L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in SBV(Ω,Rk). Nonlinear Anal. 23 (1994) 405–425. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76–97. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Ambrosio, N. Fusco and J. Hutchinson, Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differ. Eq. 16 (2003) 187–215. [CrossRef] [Google Scholar]
  10. L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxf. Math. Monogr. The Clarendon Press Oxford University Press, New York (2000). [Google Scholar]
  11. L. Ambrosio, S. Mortola, and V. Tortorelli, Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 (1991) 269–323. [Google Scholar]
  12. L. Ambrosio and D. Pallara, Integral representations of relaxed functionals on BV(Rn,Rk) and polyhedral approximation. Indiana Univ. Math. J. 42 (1993) 295–321. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Aviles and Y. Giga, Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration. Mech. Anal. 115 (1991) 201–255. [CrossRef] [Google Scholar]
  14. J. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225–253. [Google Scholar]
  15. G. Bouchitté, I. Fonseca, and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 463–479. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Braides and A. Coscia, The interaction between bulk energy and surface energy in multiple integrals. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737–756. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes in Math. Ser., vol. 207. Longman Scientific & Technical, Harlow (1989). [Google Scholar]
  18. L. Carbone and R. De Arcangelis, Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat. 39 (1990) 99–129. [Google Scholar]
  19. G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscr. Math. 30 (1979/80) 387–416. [CrossRef] [Google Scholar]
  20. E. De Giorgi and L. Ambrosio, New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199–210 (1989). [MathSciNet] [Google Scholar]
  21. E. De Giorgi, F. Colombini, and L. Piccinini, Frontiere orientate di misura minima e questioni collegate. Scuola Normale Superiore, Pisa (1972). [Google Scholar]
  22. L. Evans and R. Gariepy, Measure theory and fine properties of functions. Stud.Adv. Math. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  23. I. Fonseca, Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 99–115. [CrossRef] [MathSciNet] [Google Scholar]
  24. I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309–338. [Google Scholar]
  25. I. Fonseca and P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal. 7 (1997) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  26. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. [CrossRef] [MathSciNet] [Google Scholar]
  27. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,Rp) for integrands f(x,u,u). Arch. Ration. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  28. I. Fonseca and P. Rybka, Relaxation of multiple integrals in the space BV(Ω,Rp). Proc. Roy. Soc. Edinburgh Sect. A 121 (1992) 321–348. [Google Scholar]
  29. C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159–178. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Kristensen, Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Eqs. 7 (1998) 249–261. [CrossRef] [Google Scholar]
  31. C. Larsen, Quasiconvexification in W1,1 and optimal jump microstructure in BV relaxation. SIAM J. Math. Anal. 29 (1998) 823–848. [CrossRef] [MathSciNet] [Google Scholar]
  32. H. Lebesgue, Intégrale, longueur, aire. Ann. Mat. Pura Appl. 7 (1902) 231–359. [CrossRef] [Google Scholar]
  33. J. Malý, Weak lower semicontinuity of polyconvex and quasiconvex integrals. Manuscr. Math. 85 (1994) 419–428. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51 (1985) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  35. P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Annal. Inst. Henri Poincaré Anal. Non Linéaire 3 (1986) 391–409. [Google Scholar]
  36. P. Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge Stud. Adv. Math., vol. 44. Cambridge University Press, Cambridge (1995), Fractals and rectifiability. [Google Scholar]
  37. N. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125–149. [CrossRef] [MathSciNet] [Google Scholar]
  38. C. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25–53. [CrossRef] [MathSciNet] [Google Scholar]
  39. C. Morrey, Multiple integrals in the calculus of variations. Classics Math. (1966). [Google Scholar]
  40. S. Müller, On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41 (1992) 295–301. [CrossRef] [MathSciNet] [Google Scholar]
  41. J. Reshetnyak, General theorems on semicontinuity and convergence with functionals. Sibirsk. Mat. Ž. 8 (1967) 1051–1069. [MathSciNet] [Google Scholar]
  42. F. Rindler, Lower semicontinuity and Young measures in BV(Ω;Rm) without Alberti’s Rank-One Theorem. Adv. Calc. Var. 5 (2012) 127–159. [CrossRef] [MathSciNet] [Google Scholar]
  43. W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). [Google Scholar]
  44. T. Schmidt, Regularity of relaxed minimizers of quasiconvex variational integrals with (p,q)-growth. Arch. Ration. Mech. Anal. 193 (2009) 311–337. [CrossRef] [MathSciNet] [Google Scholar]
  45. T. Schmidt, A simple partial regularity proof for minimizers of variational integrals. NoDEA Nonlinear Differ. Eq. Appl. 16 (2009) 109–129. [CrossRef] [Google Scholar]
  46. J. Serrin, A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math. 102 (1959) 23–32. [CrossRef] [MathSciNet] [Google Scholar]
  47. J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139–167. [CrossRef] [MathSciNet] [Google Scholar]
  48. P. Soneji, Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth. ESAIM: COCV 19 (2013) 555–573. [CrossRef] [EDP Sciences] [Google Scholar]
  49. W. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts Math., vol. 120. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.