Free Access
Volume 21, Number 3, July-September 2015
Page(s) 670 - 689
Published online 13 May 2015
  1. Y. Aharonov and A. Casher, Ground state of a spin-1 / 2 charged particle in a two-dimensional magnetic field. Phys. Rev. A 19 (1979) 2461–2462. [CrossRef] [Google Scholar]
  2. M.S. Ashbaugh and R.D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. In Vol. 76. Proc. of Sympos. Pure Math. Amer. Math. Soc. Providence, RI (2007) 105–139. [Google Scholar]
  3. C. Bandle, Isoperimetric Inequalities and Applications. In Vol. 7 of Monogr. Stud. Math. Pitman (Advanced Publishing Program), Boston, Mass. (1980). [Google Scholar]
  4. R.D. Benguria and H. Linde, Isoperimetric inequalities for eigenvalues of the LaPlace operator. Fourth Summer School in Analysis and Mathematical Physics. In Vol. 476 of Contemp. Math. Amer. Math. Soc. Providence, RI (2008) 1–40. [Google Scholar]
  5. V. Bonnaillie-Noël, M. Dauge, D. Martin and G. Vial, Computations of the first eigenpairs for the Schrödinger operator with magnetic field. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3841–3858. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Erdös, Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. Partial Differ. Eqs. 4 (1996) 283–292. [CrossRef] [Google Scholar]
  7. L. Erdös, Recent developments in quantum mechanics with magnetic fields, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. In Vol. 76, Part 1. Proc. of Sympos. Pure Math. Amer. Math. Soc. Providence, RI (2007) 401–428. [Google Scholar]
  8. L. Erdös, M. Loss and V. Vougalter, Diamagnetic behavior of sums of Dirichlet eigenvalues. Ann. Inst. Fourier, Grenoble 50 (2000) 891–907. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity. In Vol. 77 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser Boston, Inc., Boston, MA (2010). [Google Scholar]
  10. R.L. Frank, A. Laptev and S. Molchanov, Eigenvalue estimates for magnetic Schrödinger operators in domains. Proc. Amer. Math. Soc. 136 (2008) 4245–4255. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.L. Frank, M. Loss and T. Weidl, Pólya’s conjecture in the presence of a constant magnetic field. J. Eur. Math. Soc. (JEMS) 11 (2009) 1365–1383. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Helffer and A. Morame, Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185 (2001) 604–680. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers Math. Birkhäuser Verlag, Basel (2006). [Google Scholar]
  14. D. Henry, Perturbation of the Boundary in Boundary-value Problems of Partial Differential Equations. With editorial assistance from Jack Hale and Antônio Luiz Pereira. In Vol. 318 of London Math. Soc. Lect. Note Series. Cambridge University Press, Cambridge (2005). [Google Scholar]
  15. S. Kesavan, Symmetrization and Applications. In Vol. 3 of Series in Analysis. World Scientific Publishing Co., Hackensack, NJ (2006). [Google Scholar]
  16. A. Laptev and T. Weidl, Sharp Lieb-Thirring inequalities in high dimensions. Acta Math. 184 (2000) 87–111. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.S. Laugesen, J. Liang and A. Roy, Sums of magnetic eigenvalues are maximal on rotationally symmetric domains. Ann. Henri Poincaré 13 (2012) 731–750. [CrossRef] [MathSciNet] [Google Scholar]
  18. R.S. Laugesen and B.A. Siudeja, Sharp spectral bounds on starlike domains. J. Spectral Theory 4 (2014) 309–347. [CrossRef] [Google Scholar]
  19. J.M. Luttinger, Generalized isoperimetric inequalities. J. Math. Phys. 14 (1973) 586–593, 1444–1447, 1448–1450. [CrossRef] [Google Scholar]
  20. NIST Digital Library of Mathematical Functions. Release 1.0.8 of 2014-04-25. Available at [Google Scholar]
  21. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. In Vol. 27 of Ann. Math. Stud. Princeton University Press, Princeton, N.J. (1951). [Google Scholar]
  22. D. Saint-James, Etude du champ critique Hc3 dans une geometrie cylindrique. Phys. Lett. 15 (1965) 13–15. [CrossRef] [Google Scholar]
  23. S. Son, Spectral Problems on Triangles And Disks: Extremizers and Ground States. Ph.D. thesis, University of Illinois at Urbana-Champaign (2014). Available at [Google Scholar]
  24. J.W. Strutt (Lord Rayleigh), The Theory of Sound. In Vol. 1, 2nd edition. Macmillan and Co., London (1894). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.