Free Access
Issue |
ESAIM: COCV
Volume 21, Number 4, October-December 2015
|
|
---|---|---|
Page(s) | 1076 - 1107 | |
DOI | https://doi.org/10.1051/cocv/2014059 | |
Published online | 19 June 2015 |
- R.A. Adams, Sobolev Spaces, 1st edition. Academic Press, New York, San Francisco London, 1st edition (1975). [Google Scholar]
- J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematishen Wissenschaften, No. 223. Springer-Verlag, Berlin New York (1976). [Google Scholar]
- J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l’Acad. Sci. Inst. Nat. France 23 (1877) 1–680. [Google Scholar]
- E. Cerpa, Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877–899. [CrossRef] [MathSciNet] [Google Scholar]
- E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain. Ann. Institut Henri Poincaré 26 (2009) 457–475. [Google Scholar]
- J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length. J. Eur. Math. Soc. 6 (2004) 367–398. [Google Scholar]
- S. Dolecki and D.L. Russell, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185–220. [CrossRef] [MathSciNet] [Google Scholar]
- O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60 (2008) 61–100. [MathSciNet] [Google Scholar]
- O. Glass and S. Guerrero, Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition. Systems Control Lett. 59 (2010) 390–395. [Google Scholar]
- O. Goubet and J. Shen, On the dual Petrov-Galerkin formulation of the KdV equation on a finite interval. Adv. Differ. Equ. 12 (2007) 221–239. [Google Scholar]
- L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations. Vol. 26 of Math. Appl. Springer-Verlag (1997). [Google Scholar]
- C.E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573–603. [CrossRef] [MathSciNet] [Google Scholar]
- D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39 (1895) 422–443. [CrossRef] [MathSciNet] [Google Scholar]
- C. Laurent, L. Rosier and B.Y. Zhang, Control and stabilization of the Korteweg–de Vries equation on a periodic domain. Commun. Partial Differ. Equ. 35 (2010) 707–744. [Google Scholar]
- J.-L Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Reviews 30 (1988) 1–68. [Google Scholar]
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1 of Travaux et Recherches Mathématiques. Dunod, Paris (1968) 17. [Google Scholar]
- A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Prob. 24 (2008) 015017. [Google Scholar]
- R.M. Miura, The Korteweg–de Vries equation: A survey of results. SIAM Reviews 18 (1976) 412–459. [Google Scholar]
- G. Perla-Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg–de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. [MathSciNet] [Google Scholar]
- L. Rosier, Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Rosier, Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line. SIAM J. Control Optim. 39 (2000) 331–351. [CrossRef] [MathSciNet] [Google Scholar]
- L. Rosier, Control of the surface of a fluid by a wavemaker. ESAIM: COCV 10 (2004) 346–380. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Rosier and B.-Y. Zhang, Null controllability of the complex Ginzburg–Landau equation. Ann. Institut Henri Poincaré Anal. Non Linéaire 26 (2009) 649–673. [CrossRef] [Google Scholar]
- L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg–de Vries equation: Recent progresses. J. Syst. Sci. Complexity 22 (2009) 647–682. [CrossRef] [MathSciNet] [Google Scholar]
- D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg–de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. [CrossRef] [MathSciNet] [Google Scholar]
- J.-C. Saut and R. Temam, Remarks on the Korteweg–de Vries equation. Israel J. Math. 24 (1976) 78–87. [CrossRef] [MathSciNet] [Google Scholar]
- E. Zeidler, Nonlinear functional analysis and its applications I. Springer-Verlag, New York (1986). [Google Scholar]
- B.-Y. Zhang, Exact boundary controllability of the Korteweg–de Vries equation. SIAM J. Cont. Optim. 37 (1999) 543–565. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.