Free Access
Issue
ESAIM: COCV
Volume 21, Number 4, October-December 2015
Page(s) 1053 - 1075
DOI https://doi.org/10.1051/cocv/2014058
Published online 24 June 2015
  1. E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (2002) 225–236. [Google Scholar]
  2. N. Ansini and A. Garroni, Γ-convergence of Functionals on Divergence Free Fields. ESAIM: COCV 13 (2007) 809–828. [CrossRef] [EDP Sciences] [Google Scholar]
  3. N. Ansini and F. Prinari, Power-law approximation under differential constraint. SIAM J. Math. Anal. 46 (2014) 1085–1115. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.M. Ball, A version of the fundamental theorem for Young measures. PDE’s and Continuum Models of Phase Transitions. Edited by M. Rascle, D. Serre and M. Slemrod. In vol. 344 of Lect. Notes Phys. Springer-Verlag, Berlin (1989) 207–215. [Google Scholar]
  5. E.N. Barron and W. Liu, Calculus of Variation in L. Appl. Math. Optim. 35 (1997) 237–263. [MathSciNet] [Google Scholar]
  6. E.N. Barron, R. Jensen and W. Liu, Hopf-Lax type formula for ut + H(u,du) = 0. J. Differ. Eq. 126 (1996) 48–61. [CrossRef] [Google Scholar]
  7. E.N. Barron, R. Jensen and C.Y. Wang, Lower semicontinuity of L functionals. Ann. Inst. Henri Poincaré 4 (2001) 495–517. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Bocea and V. Nesi, Γ-convergence of power-law functionals, variational principles in L and applications. SIAM J. Math. Anal. 39 (2008) 1550–1576. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Berliocchi and J.M. Lasry, Intégral normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129–184. [Google Scholar]
  10. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). [Google Scholar]
  11. A. Braides, I. Fonseca and G. Leoni, 𝒜-Quasiconvexity: Relaxation and Homogenization. ESAIM: COCV 5 (2000) 539–577. [CrossRef] [EDP Sciences] [Google Scholar]
  12. P. Cardaliaguet and F. Prinari, Supremal representation of L functionals. Appl. Math. Optim. 52 (2005) 129–141. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Champion, L. De Pascale and F. Prinari, Γ-convergence and absolute minimizers for supremal functionals. ESAIM: COCV 10 (2004) 14–27. [CrossRef] [EDP Sciences] [Google Scholar]
  14. G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  15. I. Fonseca and S. Müller, 𝒜-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Garroni, V. Nesi and M. Ponsiglione, Dielectric breakdown: optimal bounds. Proc. Roy. Soc. London A 457 (2001) 2317–2335. [Google Scholar]
  17. F. Murat, Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 68–102. [Google Scholar]
  18. F. Prinari, Semicontinuity and supremal representation in the Calculus of Variations. Appl. Math. Optim. 54 (2008) 111–145. [CrossRef] [Google Scholar]
  19. F. Prinari, Semicontinuity and relaxation of L-functionals. Adv. Calc. Var. 2 (2009), 43–71. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Prinari, On the necessary condition for the lower semicontinuity of supremal functionals. In preparation. [Google Scholar]
  21. A. Ribeiro and E. Zappale, Existence of minimizers for non-level convex supremal functionals. SIAM J. Control Optim. 52 (2014) 3341–3370. [CrossRef] [MathSciNet] [Google Scholar]
  22. L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium. Edited by R. Knops. Longman, Harlow. Pitman Res. Notes Math. Ser. 39 (1979) 136–212. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.