Free Access
Volume 22, Number 2, April-June 2016
Page(s) 371 - 403
Published online 08 March 2016
  1. R.A. Adams, Sobolev Spaces, Number 65 in Pure Appl. Math. Academic Press, New York, London (1975). [Google Scholar]
  2. B.D.O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis – A Modern Systems Theory Approach. Prentice-Hall, Englewood Cliffs, NJ (1973). [Google Scholar]
  3. A. Banaszuk, M. Kociȩcki and K. Maciej Przyłuski, Implicit linear discrete-time systems. Math. Control Signals Syst. 3 (1990) 271–297. [CrossRef] [Google Scholar]
  4. T. Berger, On differential-algebraic control systems. Ph.D. thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau, Germany (2014). [Google Scholar]
  5. T. Berger, Zero Dynamics and Stabilization for Linear DAEs. Progress in Differential-Algebraic Equations. In Differential-Algebraic Equations Forum, edited by Sebastian Schöps, Andreas Bartel, Michael Günther, E. Jan W. ter Maten and Peter C. Müller. Springer-Verlag, Berlin-Heidelberg (2014) 21–45. [Google Scholar]
  6. T. Berger and S. Trenn, The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal. Appl. 33 (2012) 336–368. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Berger and S. Trenn, Addition to “The quasi-Kronecker form for matrix pencils”. SIAM J. Matrix Anal. Appl. 34 (2013) 94–101. [CrossRef] [MathSciNet] [Google Scholar]
  8. T. Berger and T. Reis, Zero dynamics and funnel control for linear electrical circuits. J. Franklin Inst. 351 (2014) 5099–5132. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Berger and T. Reis, Controllability of Linear Differential-Algebraic Systems – A Survey. Surveys in Differential-Algebraic Equations I. In Differential-Algebraic Equations Forum, edited by A. Ilchmann and T. Reis. Springer-Verlag, Berlin-Heidelberg (2013) 1–61. [Google Scholar]
  10. T. Berger, A. Ilchmann and T. Reis, Normal Forms, High-gain, and Funnel Control for Linear Differential-Algebraic Systems. Control and Optimization with Differential-Algebraic Constraints. Vol. 23 of Advances in Design and Control, edited by L.T. Biegler, S.L. Campbell and Volker Mehrmann. SIAM, Philadelphia (2012) 127–164. [Google Scholar]
  11. T. Berger, A. Ilchmann and T. Reis, Zero dynamics and funnel control of linear differential-algebraic systems. Math. Control Signals Syst. 24 (2012) 219–263. [CrossRef] [Google Scholar]
  12. T. Berger, A. Ilchmann and S. Trenn, The quasi-Weierstraß form for regular matrix pencils. Linear Algebra Appl. 436 (2012) 4052–4069. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Berger, A. Ilchmann and T. Reis, Funnel Control for Nonlinear Functional Differential-Algebraic Systems. In Proc. of the MTNS 2014. Groningen, The Netherlands (2014) 46–53. [Google Scholar]
  14. T. Berger, A. Ilchmann and F. Wirth, Zero dynamics and stabilization for analytic linear systems. Acta Applicandae Mathematicae 138 (2015) 17–57. [CrossRef] [MathSciNet] [Google Scholar]
  15. K.E. Brenan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, Amsterdam (1989). [Google Scholar]
  16. J. Dwight Aplevich, Minimal representations of implicit linear systems. Automatica 21 (1985) 259–269. [CrossRef] [MathSciNet] [Google Scholar]
  17. C.I. Byrnes and A. Isidori, A frequency domain philosophy for nonlinear systems, with application to stabilization and to adaptive control. In Proc. of 23rd IEEE Conf. Decis. Control 1 (1984) 1569–1573. [Google Scholar]
  18. B. Dziurla and R.W. Newcomb, Nonregular Semistate Systems: Examples and Input-Output Pairing. IEEE Press, New York (1987). [Google Scholar]
  19. E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998). [Google Scholar]
  20. D. Estévez Schwarz and C. Tischendorf, Structural analysis for electric circuits and consequences for MNA. Int. J. Circuit Theory Appl. 28 (2000) 131–162. [CrossRef] [Google Scholar]
  21. F.R. Gantmacher, The Theory of Matrices. In vol. I & II. Chelsea, New York (1959). [Google Scholar]
  22. A.H.W. (Ton) Geerts, Invariant subspaces and invertibility properties for singular systems: the general case. Linear Algebra Appl. 183 (1993) 61–88. [CrossRef] [MathSciNet] [Google Scholar]
  23. C.-W. Ho, A.E. Ruehli and P.A. Brennan, The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22 (1975) 504–509. [CrossRef] [Google Scholar]
  24. A. Ilchmann and E.P. Ryan, High-gain control without identification: a survey. GAMM Mitt. 31 (2008) 115–125. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Ilchmann and E.P. Ryan, Performance funnels and tracking control. Int. J. Control 82 (2009) 1828–1840. [CrossRef] [Google Scholar]
  26. A. Ilchmann, E.P. Ryan and C.J. Sangwin, Tracking with prescribed transient behaviour. ESAIM: COCV 7 (2002) 471–493. [CrossRef] [EDP Sciences] [Google Scholar]
  27. A. Ilchmann, E.P. Ryan and P. Townsend, Tracking with prescribed transient behavior for nonlinear systems of known relative degree. SIAM J. Control Optim. 46 (2007) 210–230. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Isidori, Nonlinear Control Systems. Commun. Control Eng. Series, 3rd edition. Springer-Verlag, Berlin (1995). [Google Scholar]
  29. T. Kailath, Linear Systems. Prentice-Hall, Englewood Cliffs, NJ (1980). [Google Scholar]
  30. A. Kumar and P. Daoutidis, Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes. Vol. 397 of Chapman Hall/CRC Res. Notes Math. Chapman and Hall, Boca Raton, FL (1999). [Google Scholar]
  31. P. Kunkel and V. Mehrmann, Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich, Switzerland (2006). [Google Scholar]
  32. R. Lamour, R. März and C. Tischendorf, Differential Algebraic Equations: A Projector Based Analysis. Vol. 1 of Differ. Algebr. Eq. Forum. Springer-Verlag, Heidelberg-Berlin (2013). [Google Scholar]
  33. M. Malabre, Generalized linear systems: geometric and structural approaches. Linear Algebra Appl. 122 (1989) 591–621. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Mueller, Normal form for linear systems with respect to its vector relative degree. Linear Algebra Appl. 430 (2009) 1292–1312. [CrossRef] [MathSciNet] [Google Scholar]
  35. K. Özçaldiran, A geometric characterization of the reachable and controllable subspaces of descriptor systems. IEEE Proc. Circuits, Systems and Signal Processing 5 (1986) 37–48. [Google Scholar]
  36. J.W. Polderman and J.C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach. Springer-Verlag, New York (1998). [Google Scholar]
  37. T. Reis, Circuit synthesis of passive descriptor systems – a modified nodal approach. Int. J. Circ. Theor. Appl. 38 (2010) 44–68. [CrossRef] [Google Scholar]
  38. W. Respondek, Right and Left Invertibility of Nonlinear Control Systems. In Nonlinear Controllability and Optimal Control, edited by H.J. Sussmann. Marcel Dekker, New York (1990) 133–177. [Google Scholar]
  39. R. Riaza, Differential-Algebraic Systems, Analytical Aspects and Circuit Applications. World Scientific Publishing, Basel (2008). [Google Scholar]
  40. H.H. Rosenbrock, Structural properties of linear dynamical systems. Int. J. Control 20 (1974) 191–202. [CrossRef] [Google Scholar]
  41. P. Sannuti and A. Saberi, Special coordinate basis for multivariable linear system – finite and infinite zero structure, squaring down and decoupling. Int. J. Control 45 (1987) 1655–1704. [CrossRef] [Google Scholar]
  42. L.M. Silverman, Inversion of multivariable linear systems. IEEE Trans. Auto. Control 14 (1969) 270–276. [CrossRef] [Google Scholar]
  43. L.M. Silverman and H.J. Payne, Input-output structure of linear systems with application to the decoupling problem. SIAM J. Control 9 (1971) 199–233. [CrossRef] [MathSciNet] [Google Scholar]
  44. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Number 41 in Appl. Math. Sci. Springer-Verlag (1982). [Google Scholar]
  45. S. Trenn, Solution Concepts for Linear DAEs: A Survey. Surveys in Differential-Algebraic Equations I. In Differ. Algebr. Eq. Forum, edited by A. Ilchmann and T. Reis. Springer-Verlag, Berlin-Heidelberg (2013) 137–172. [Google Scholar]
  46. H.L. Trentelman, A.A. Stoorvogel and M.L.J. Hautus, Control Theory for Linear Systems. Commun. Control Engineering. Springer-Verlag, London (2001). [Google Scholar]
  47. L.M. Wedepohl and L. Jackson, Modified nodal analysis: an essential addition to electrical circuit theory and analysis. Eng. Sci. Educ. J. 11 (2002) 84–92. [CrossRef] [Google Scholar]
  48. H. Zhao and D. Chen, Stable Inversion for Exact and Stable Tracking Controllers: A Flight Control Example. In Proc. of 4th IEEE Conference on Control Applications (1995) 482–487. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.