Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1137 - 1162
DOI https://doi.org/10.1051/cocv/2016034
Published online 13 September 2016
  1. F.W. Chaves-Silva, A hyperbolic system and the cost of the null controllability for the Stokes system. Comput. Appl. Math. 34 (2015) 1057–1074. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.-M. Coron and S. Guerrero, Null controllability of the N-dimensional Stokes system with N-1 scalar controls. J. Differ. Equ. 246 (2009) 2908–2921. [CrossRef] [Google Scholar]
  3. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, Vol. 268 of Lecture Note Series. Cambridge University Press, London (1999) vii+226p. [Google Scholar]
  4. S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions. Math. Control Rel. Fields 1 (2011) 177–187. [CrossRef] [Google Scholar]
  5. S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Rational Mech. Anal. 202 (2011) 975–1017. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Fabre and G. Lebeau, Régularité et unicité pour le problème de Stokes. Commun. Partial Differ. Equ. 27 (2002) 437–475. [CrossRef] [Google Scholar]
  7. E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. [Google Scholar]
  8. E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the N-dimensional Navier-Stokes and Boussinesq system. SIAM J. Control Optim. 45 (2006) 146–173. [CrossRef] [MathSciNet] [Google Scholar]
  10. A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Vol. 34 of Lecture Notes Series. Research Institute of Mathematics, Seoul National University, Seoul (1996). [Google Scholar]
  11. O. Yu. Imanuvilov, Remarks on exact controllability for the Navier−Stokes equations. ESAIM: COCV 6 (2001) 39–72. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30 (2009) 333–378. [CrossRef] [MathSciNet] [Google Scholar]
  13. O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for second order non homogeneous parabolic equations (preprint). [Google Scholar]
  14. G. Lebeau, Introduction aux inégalités de Carleman. Séminaires et Congrès. In vol. 29. Publications SMF (2015) 51–92. [Google Scholar]
  15. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. [Google Scholar]
  16. G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141 (1998) 297–329. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712–747. [CrossRef] [EDP Sciences] [Google Scholar]
  18. A. Martinez, An introduction to Semiclassical and Microlocal Analysis. Springer, New York (2002). [Google Scholar]
  19. G. Métivier, Valeurs propres d’opérateurs définis par la restriction de systèmes variationnels à des sous-espaces. J. Math. Pures Appl. 9 (1978) 133–156. [Google Scholar]
  20. L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204 (2004) 202–226. [CrossRef] [Google Scholar]
  21. L. Miller, The Control Transmutation Method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762–772. [CrossRef] [MathSciNet] [Google Scholar]
  22. L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1465–1485. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptot. Anal. 10 (1995) 95–115. [Google Scholar]
  24. T.I. Seidman, How violent are fast controls: III. J. Math. Anal. Appl. 339 (2008) 461–468. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.