Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1163 - 1183
Published online 28 July 2016
  1. Hirokazu Fujisaka and Tomoji Yamada, Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69 (1983) 32–47. [CrossRef] [Google Scholar]
  2. Long Hu, Fanqiong Ji and Ke Wang, Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations. Chin. Ann. Math. 34 (2013) 379–390. [Google Scholar]
  3. Long Hu, Tatsien Li, Bopeng Rao, Exact Boundary Synchronization for a Coupled System of 1-D Wave Equations with coupled boundary conditions of dissipative type. Commun. Pure Appl. Anal. 13 (2014) 881–901. [MathSciNet] [Google Scholar]
  4. Ch. Huygens, Œuvres Complètes, Vol. 15. Swets & Zeitlinger B.V., Amsterdam (1967). [Google Scholar]
  5. Tatsien Li, Exact boundary controllability for quasilinear wave equations. J. Comput. Appl. Math. 190 (2006) 127–135. [CrossRef] [MathSciNet] [Google Scholar]
  6. Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems. Vol. 3 of AIMS Series on Applied Mathematics. AIMS & Higher Education Press (2010). [Google Scholar]
  7. Tatsien Li, Yi Jin, Semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. 22 (2001) 325–336. [Google Scholar]
  8. Tatsien Li, Bopeng Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math. 23 (2002) 209–218. [Google Scholar]
  9. Tatsien Li, Bopeng Rao, Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control. Optim. 41 (2003) 1748–1755. [Google Scholar]
  10. Tatsien Li, Bopeng Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math. 31 (2010) 723–742. [Google Scholar]
  11. Tatsien Li, Bopeng Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Ann. Math. 34 (2013) 139–160. [Google Scholar]
  12. Tatsien. Li, Wenci. Yu, Boundary Value Problems for Quasilinear Hyperbolic systems. Duke University Mathematics Series V (1985). [Google Scholar]
  13. Tatsien Li, Lixin Yu, Exact boundary controllability for 1-D quasilinear wave equations. SIAM J. Control. Optim. 45 (2006) 1074–1083. [CrossRef] [MathSciNet] [Google Scholar]
  14. Tatsien Li, Bopeng Rao, Long Hu, Exact boundary synchronization for a coupled system of 1-D wave equations. ESAIM: COCV 20 (2014) 339–361. [CrossRef] [EDP Sciences] [Google Scholar]
  15. J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués. Vol. I. Masson (1988). [Google Scholar]
  16. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
  17. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990) 821–824. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. S. Strogatz, SYNC: The Emerging Science of Spontaneous Order. THEIA, New York (2003). [Google Scholar]
  19. Zhiqiang Wang, Exact controllability for nonautonomous quasilinear hyperbolic systems. Chin. Ann. Math. 27 (2006) 643–656. [CrossRef] [MathSciNet] [Google Scholar]
  20. Zhiqiang Wang, Exact boundary controllability for nonautonomous quasilinear wave equations. Math. Methods Appl. Sci. 30 (2007) 1311–1327. [CrossRef] [MathSciNet] [Google Scholar]
  21. Chai Wah Wu, Synchronizaton in complex networks of nonlinear dynamical systems. World scientific (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.