Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1184 - 1203
Published online 28 July 2016
  1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables. Vol. 55 of Appl. Math. Series. National Bureau of Standards (1964). [Google Scholar]
  2. L. Ambrosio, Transport equation and Cauchy Problem for BV vector fields. Invent. Math. 158 (2004) 227–260. [Google Scholar]
  3. S.A. Avdonin and S.A. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, Cambridge New York (1995). [Google Scholar]
  4. P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47 (2008) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Cannarsa, J. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation. Appl. Anal. 91 (2012) 1409–1425. [CrossRef] [MathSciNet] [Google Scholar]
  6. N. Carreno and S. Guerrero, On the non-uniform null controllability of a linear KdV equation. Asymptot. Anal. 94 (2015) 33–69. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.-M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237–257. [MathSciNet] [Google Scholar]
  8. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [CrossRef] [MathSciNet] [Google Scholar]
  9. H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43 (1971) 272–292. [Google Scholar]
  10. A.V. Fursikov and O.Y. Imanuvilov, Controllability of Evolution Equations. Vol. 34 of Lecture Notes. Seoul National University, Korea (1996). [Google Scholar]
  11. O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852–868. [CrossRef] [MathSciNet] [Google Scholar]
  12. O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation. SIAM J. Control Optim. 46 (2007) 1211–1238. [Google Scholar]
  13. O. Glass and S. Guerrero, Uniform controllability of a transport equation in zero diffusion-dispersion limit. Math. Models Methods Appl. Sci. 19 (2009) 1567–1601. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation. Commun. Partial Differ. Eq. 32 (2007) 1813–1836. [Google Scholar]
  15. M. Gueye, Exact boundary controllability of 1 − D parabolic and hyperbolic equations. SIAM J. Control Optim. 52 (2014) 2037–2054. [CrossRef] [MathSciNet] [Google Scholar]
  16. L.F. Ho and D.L. Russell, Admissible Input Elements for Systems in Hilbert Space and a Carleson Measure Criterion. SIAM J. Control Optim. 21 614–640. [Google Scholar]
  17. E. Kamke, Differentialgleichungen: L’sungsmethoden und l’sungen, 3rd edition. Chelsea Publishing Company, New York (1948). [Google Scholar]
  18. G. Lebeau and L. Robbiano, Controle exact de l’équation de la chaleur. Commun. Partial Differ. Eq. 20 (1995) 335–356. [CrossRef] [Google Scholar]
  19. V. Komornik and P. Loreti, Fourier series in control theory. Springer (2005). [Google Scholar]
  20. M. Léautaud, Uniform controllability of scalar conservation laws in the vanishing viscosity limit. SIAM, J. Control Optim. 50 (2012) 1661–1699. [Google Scholar]
  21. P. Lissy, A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation. C. R. Math. Acad. Sci. Paris 350 (2012) 591–595. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Lissy, An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit. Syst. Control Lett. 69 (2014) 98–102. [CrossRef] [Google Scholar]
  23. P. Lissy, On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension. SIAM J. Control Optim. 52 (2014) 2651–2676. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation. J. Differ. Equ. 259 (2015) 5331–5352. [CrossRef] [Google Scholar]
  25. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Springer, Berlin (1972). [Google Scholar]
  26. L. Lorch and M.E. Muldoon, Monotonic sequences related to zeros of Bessel functions. Numer. Algor. 49 (2008) 221–233. [CrossRef] [Google Scholar]
  27. P. Koosis, The logarithmic integral I & II. Vol. 12 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1988) and Vol. 21 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1992). [Google Scholar]
  28. G. Metafune and D. Pallara, Trace Formulas for Some Singular Differential Operators and Applications. Math. Nachr. 211 (2000) 127–157. [CrossRef] [MathSciNet] [Google Scholar]
  29. W. Rudin, Real and complex analysis. McGraw-Hill Book Co., New York (1966). [Google Scholar]
  30. H. Tanabe, Equations of evolution [English transl., Iwanami, Tokyo (1975)]. Pitman, London (1979). [Google Scholar]
  31. G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations. J. Differ. Equ. 243 (2007) 70–100. [CrossRef] [MathSciNet] [Google Scholar]
  32. G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge, England (1958). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.