Free Access
Volume 24, Number 1, January-March 2018
Page(s) 211 - 235
Published online 17 January 2018
  1. P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system. Electron. J. Differ. Equ. 22 (2000) 15. [Google Scholar]
  2. E.V. Amosova, Exact local controllability for the equations of viscous gas dynamics. Differ. Uravneniya 47 (2011) 1754–1772. [Google Scholar]
  3. M. Badra, S. Ervedoza and S. Guerrero, Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. (2014). [Google Scholar]
  4. D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238 (2003) 211–223. [Google Scholar]
  5. D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28 (2003) 843–868. [CrossRef] [Google Scholar]
  6. F.W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control. J. Math. Pures Appl. 101 (2014) 198–222. [Google Scholar]
  7. S. Chowdhury, M. Debanjana, M. Ramaswamy and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension. J. Differ. Equ. 257 (2014) 3813–3849. [Google Scholar]
  8. S. Chowdhury, M. Ramaswamy and J.-P. Raymond, Controllability and stabilizability of the linearized compressible Navier-Stokes system in one dimension. SIAM J. Control Optim. 50 (2012) 2959–2987. [Google Scholar]
  9. J.-M. Coron, On the controllability of the -D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 35–75. [CrossRef] [EDP Sciences] [Google Scholar]
  10. J.-M. Coron, On the controllability of -D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [Google Scholar]
  11. J.-M. Coron, Control and nonlinearity, Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  12. J.-M. Coron and A.V. Fursikov, Global exact controllability of the D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429–448. [MathSciNet] [Google Scholar]
  13. S. Ervedoza, O. Glass, S. Guerrero and J.-P. Puel, Local exact controllability for the one-dimensional compressible Navier-Stokes equation. Arch. Ration. Mech. Anal. 206 (2012) 189–238. [Google Scholar]
  14. E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [Google Scholar]
  15. A.V. Fursikov and O. Yu. Èmanuilov, Exact controllability of the Navier-Stokes and Boussinesq equations. Uspekhi Mat. Nauk 54 (1999) 93–146. [CrossRef] [Google Scholar]
  16. A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations, Vol. 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996). [Google Scholar]
  17. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences] [Google Scholar]
  18. O. Glass, On the controllability of the 1-D isentropic Euler equation. J. Eur. Math. Soc. (JEMS) 9 (2007) 427–486. [CrossRef] [Google Scholar]
  19. O. Glass, On the controllability of the non-isentropic 1-D Euler equation. J. Differ. Equ. 257 (2014) 638–719. [Google Scholar]
  20. O.Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: COCV 6 (2001) 39–72. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  21. T.-T. Li and B.-P. Rao, Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim. 41 (2003) 1748–1755. [Google Scholar]
  22. D. Maity, Some controllability results for linearized compressible Navier-Stokes system. ESAIM: COCV 21 (2015) 1002–1028. [CrossRef] [EDP Sciences] [Google Scholar]
  23. P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 51 (2013) 660–684. [Google Scholar]
  24. A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20 (1980) 67–104. [CrossRef] [Google Scholar]
  25. L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping. Int. J. Tomogr. Stat. 5 (2007) 79–84. [MathSciNet] [Google Scholar]
  26. J. Simon, Compact sets in the space . Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  27. H. Triebel, Interpolation theory, function spaces, differential operators. North-Holland Publishing Co. Amsterdam New York (1978). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.