Open Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 58
Number of page(s) 55
DOI https://doi.org/10.1051/cocv/2018036
Published online 25 October 2019
  1. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of the waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Bergh and J. Löfström, Interpolation Spaces: An introduction. Grundlehren der Mathematishen Wissenschaften. Springer-Verlag, Berlin, New York (1976). [CrossRef] [Google Scholar]
  3. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12 (2002) 283–318. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory. Nonlinearity 17 (2004) 925–952. [Google Scholar]
  5. J. Boussinesq, Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal. C. R. Acad. Sci. Paris 73 (1871) 256–260. [Google Scholar]
  6. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17 (1872) 55–108. [MathSciNet] [Google Scholar]
  7. R.A. Capistrano-Filho, A.F. Pazoto, L. Rosier, Internal controllability of the Kortewegde Vries equation on a bounded domain. ESAIM: COCV 21 (2015) 1076–1107. [CrossRef] [EDP Sciences] [Google Scholar]
  8. E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877–899. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Inst. Henri Poincaré 26 (2009) 457–475. [CrossRef] [Google Scholar]
  10. E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 655–668. [CrossRef] [Google Scholar]
  11. J. Chu, J.-M. Coron and P. Shang, Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths. J. Differ. Equ. 259 (2015) 4045–4085. [Google Scholar]
  12. J.-M. Coron, Control and Nonlinearity. In Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007. [Google Scholar]
  13. J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length. J. Eur. Math. Soc. 6 (2004) 367–398. [CrossRef] [MathSciNet] [Google Scholar]
  14. P.c.N. da Silva and C.F. Vasconcellos, On the stabilization and controllability of a third order linear equation. Port. Math. 68 (2011) 279–296. [CrossRef] [Google Scholar]
  15. G.G. Doronin, N. A. Larkin, Stabilization of regular solutions for the Zakharov-Kuznetsov equation posed on bounded rectangles and on a strip. Proc. Edinb. Math. Soc. 58 (2015) 661–682. [CrossRef] [Google Scholar]
  16. G.G. Doronin and F.M. Natali, An example of non-decreasing solution for the KdV equation posed on a bounded interval. C. R. Math. Acad. Sci. Paris 352 (2014) 421–424. [CrossRef] [Google Scholar]
  17. A.L.C. dos Santos, P.N. da Silva and C.F. Vasconcellos, Entire functions related to stationary solutions of the Kawahara equation. Electron. J. Differ. Equ. 43 (2016) 13. [Google Scholar]
  18. O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60 (2008) 61–100. [MathSciNet] [Google Scholar]
  19. O. Glass and S. Guerrero, Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition. Syst. Control Lett. 59 (2010) 390–395. [Google Scholar]
  20. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39 (1895) 422–443. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Laurent, L. Rosier and B.Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain. Commun. Part. Differ. Equ. 35 (2010) 707–744. [CrossRef] [Google Scholar]
  22. F. Linares and A.F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping. Proc. Am. Math. Soc. 135 (2007) 1515–1522. [Google Scholar]
  23. F. Linares and L. Rosier, Control and Stabilization of the Benjamin-Ono equation on a periodic domain. Trans. AMS 367 (2015) 4595–4626. [CrossRef] [Google Scholar]
  24. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués – Tome 1. Vol. 8 of Recherches en Mathématiques Appliquées [ Research in Applied Mathematics]. Masson, Paris (1988). [Google Scholar]
  25. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1 of Travaux et Recherches Mathemátiques. Dunod, Paris (1968). [Google Scholar]
  26. S. Micu, J.H. Ortega, L. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems. Discrete Contin. Dyn. Syst. 24 (2009) 273–313. [CrossRef] [Google Scholar]
  27. A.F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM: COCV 11 (2005) 473–486. [CrossRef] [EDP Sciences] [Google Scholar]
  28. A.F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV–KdV type. Syst. Control Lett. 57 (2008) 595–601. [Google Scholar]
  29. G. Perla-Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. [CrossRef] [Google Scholar]
  30. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences] [Google Scholar]
  31. L. Rosier, Control of the surface of a fluid by a wavemaker. ESAIM: COCV 10 (2004) 346–380. [CrossRef] [EDP Sciences] [Google Scholar]
  32. L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation. SIAM J. Control Optim. 45 (2006) 927–956. [CrossRef] [MathSciNet] [Google Scholar]
  33. D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Am. Math. Soc. 348 (1996) 3643–3672. [Google Scholar]
  34. J. Simon, Compact sets in the Lp(0; T; B) spaces. Anal. Mat. Pura Appl. 146 (1987) 65–96. [CrossRef] [MathSciNet] [Google Scholar]
  35. E.C. Titchmarsh, The theory of functions. Oxford University Press, Oxford (1958). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.