Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 10
Number of page(s) 30
DOI https://doi.org/10.1051/cocv/2021006
Published online 08 March 2021
  1. F. Alabau-Boussouira, A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE’s by a reduced number of controls. Adv. Diff. Equ. 18 (2013) 1005–1072. [Google Scholar]
  2. F. Alabau-Boussouira, T.-T. Li and B. Rao, Indirect observation and control for a coupled cascade system of wave equations with Neumann boundary conditions. Inpreparation (2020). [Google Scholar]
  3. F. Ammar Khodja, A. Benabdallah and C. Dupaix, Null-controllability of some reaction-diffusion systems with one control force. J. Math. Anal. Appl. 320 (2006) 928–944. [Google Scholar]
  4. B. Dehman, J. Le Rousseau and M. Léautaud, Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211 (2014) 113–187. [Google Scholar]
  5. E. Fernéndez-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations. J. Funct. Anal. 259 (2010) 1720–1758. [Google Scholar]
  6. L. Hu, T.-T. Li and B. Rao, Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary controls of dissipative type. Commun. Pure Appl. Anal. 13 (2014) 881–901. [Google Scholar]
  7. L. Hu, T.-T. Li and P. Qu, Exact boundary synchronization for a coupled system of 1-D quasilinear wave equations. ESAIM: COCV 22 (2016) 1163–1183. [EDP Sciences] [Google Scholar]
  8. Ch. Huygens, Oeuvres Complètes, Vol. 15. Swets & Zeitlinger B.V., Amsterdam (1967). [Google Scholar]
  9. I. Lasiecka and R. Triggiani, Sharp regularity theory for second order hyperbolic equations of Neumann type. Part I. L2 nonhomogeneous data. Ann. Mate. Pura Appl. 157 (1990) 285–367. [Google Scholar]
  10. I. Lasiecka and R. Triggiani, Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. Part II. General boundary data. J. Differ. Equ. 94 (1991) 112–164. [Google Scholar]
  11. F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comp. 8 (2018) 390–401. [Google Scholar]
  12. F. Li and Z. Jia, Global existence and stability of a class of nonlinear evolution equations with hereditary memory and variable density. Boundary Value Probl. 37 (2019). [Google Scholar]
  13. F. Li, Sh. Xi, K. Xu and X. Xue, Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II. J. Appl. Anal. Comput. 9 (2019) 2318–2332. [Google Scholar]
  14. T.-T. Li, X. Lu and B. Rao, Exact boundary synchronization for a coupled system of wave equations with Neumann controls. Chin. Ann. Math., Séries B 39 (2018) 233–252. [Google Scholar]
  15. T.-T. Li, X. Lu and B. Rao, Exact boundary controllability and exact boundary synchronization for a coupled system of wave equationswith coupled Robin boundary controls. ESAIM: COCV 124 (2018) 1675–1704. [Google Scholar]
  16. T.-T. Li and B. Rao, Exact boundary synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Ann. Math. Ser. B 34 (2013) 139–160. [CrossRef] [MathSciNet] [Google Scholar]
  17. T.-T. Li and B. Rao, Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls. Asymptot. Anal. 86 (2014) 199–226. [Google Scholar]
  18. T.-T. Li and B. Rao, Exact synchronization by groups for a coupled system of wave equations with Dirichlet controls. J. Math. Pures Appl. 105 (2016) 86–101. [Google Scholar]
  19. T.-T. Li and B. Rao, Criteria of Kalman’s type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls. SIAM J. Control Optim. 54 (2016) 49–72. [Google Scholar]
  20. T.-T. Li and B. Rao, On the approximate boundary synchronization for a coupled system of wave equations: Direct and indirect boundary controls. ESIAM: COCV 24 (2018) 1975–1704. [Google Scholar]
  21. T.-T. Li and B. Rao, Exact boundary controllability for a coupled system of wave equations with Neumann controls. Chin. Ann. Math., Séries B 38 (2017) 473–488. [Google Scholar]
  22. T.-T. Li and B. Rao, Boundary Synchronization for Hyperbolic Systems. Progr. Non Linear Differ. Equ. Appl. 94 (2019). [Google Scholar]
  23. T.-T. Li, B. Rao and Y. Wei, Generalized exact boundary synchronization for a coupled system of wave equations. Discrete Contin. Dyn. Syst. 34 (2014) 2893–2905. [Google Scholar]
  24. W. Lijuan and Y. Qishu, Optimal control problem for exact synchronization of parabolic system. Math. Control Relat. Fields 9 (2019) 411–424. [Google Scholar]
  25. J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites. Grundlehren Vol. 111. Springer, Berlin/Göttingen/Heidelberg (1961). [Google Scholar]
  26. J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Vol. 1 Masson, Paris (1985). [Google Scholar]
  27. Z. Liu and B. Rao, A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete Contin. Dyn. Syst. 23 (2009) 399–413. [CrossRef] [Google Scholar]
  28. X. Lu, Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with Neumann and coupled Robin boundary controls. Ph.D. thesis of University of Strasbourg, IRMA 2018/002. [Google Scholar]
  29. Q. Lu and E. Zuazua, Averaged controllability for random evolution partial differential equations. J. Math. Pures Appl. 105 (2016) 367–414. [Google Scholar]
  30. A. Pazy, Semigroups of linear Operators and applications to partial differential equations. Appl. Math. Sci. 44 (1983). [CrossRef] [Google Scholar]
  31. L. Ren and J. Xin, Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D. Electr. J. Diff. Equ. 312 (2018) 1–22. [Google Scholar]
  32. L. Rosier and L. de Teresa, Exact controllability of a cascade system of conservative equations. C. R. Math. Acad. Sci. Paris 349 (2011) 291–295. [CrossRef] [MathSciNet] [Google Scholar]
  33. N. Wiener, Cybernics, or control and communication in the animal and the machine, 2nd ed. The M. I. T. Press, Cambridge, Mass., John Wiley & Sons, Inc., New York-London (1961). [Google Scholar]
  34. X. Zheng, J. Xin and X. Peng, Orbital stability of periodic traveling wave solutions to the generalized long-short wave equations. J. Appl. Anal. Comput. 9 (2019) 2389–2408. [Google Scholar]
  35. E. Zuazua, Averaged control. Automatica J. IFAC 50 (2014) 3077–3087. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.