Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 38
Number of page(s) 37
DOI https://doi.org/10.1051/cocv/2021042
Published online 30 April 2021
  1. S.D. Ahipasaoglu, P. Sun and M.J. Todd, Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optim. Methods Softw. 23 (2008) 5–19. [Google Scholar]
  2. C.D. Aliprantis and K.C. Border, Infinite dimensional analysis. A hitchhiker’s guide. Springer, Berlin, third ed. (2006). [Google Scholar]
  3. J.-M. Azaïs, Y. de Castro and F. Gamboa, Spike detection from inaccurate samplings. Appl. Comput. Harmon. Anal. 38 (2015) 177–195. [Google Scholar]
  4. A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2 (2009) 183–202. [Google Scholar]
  5. V.I. Bogachev, Vols. I, II of Measure theory. Springer-Verlag, Berlin (2007). [Google Scholar]
  6. N. Boyd, G. Schiebinger and B. Recht, The alternating descent conditional gradient method for sparse inverse problems. SIAM J. Optim. 27 (2017) 616–639. [Google Scholar]
  7. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3 (2011) 1–122. [Google Scholar]
  8. K. Bredies and M. Carioni, Sparsity of solutions for variational inverse problems with finite-dimensional data. Calc. Var. 59 (2020). [Google Scholar]
  9. K. Bredies and H.K. Pikkarainen, Inverse problems in spaces of measures. ESAIM: COCV 19 (2013) 190–218. [CrossRef] [EDP Sciences] [Google Scholar]
  10. E.J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67 (2014) 906–956. [Google Scholar]
  11. M.D. Canon and C.D. Cullum, A tight upper bound on the rate of convergence of Frank-Wolfe algorithm. SIAM J. Control 6 (1968) 509–516. [Google Scholar]
  12. E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. [Google Scholar]
  13. E. Casasand E. Zuazua, Spike controls for elliptic and parabolic PDEs. Systems Control Lett. 62 (2013) 311–318. [Google Scholar]
  14. C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. [CrossRef] [EDP Sciences] [Google Scholar]
  15. C. Clason and K. Kunisch, A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2012) 155–171. [Google Scholar]
  16. G. Dal Maso An introduction to Γ-convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993). [Google Scholar]
  17. V.F. Demyanov and A.M. Rubinov, Approximate methods in optimization problems, Translated from the Russian by Scripta Technica, Inc. Translation edited by George M. Kranc. Modern Analytic and Computational Methods in Science and Mathematics, No. 32, American Elsevier Publishing Co., Inc., New York (1970). [Google Scholar]
  18. Q. Denoyelle, V. Duval, G. Peyré and E. Soubies, The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy. Inverse Problems 36 (2019) 014001. [Google Scholar]
  19. N. Dinculeanu and J.J. Uhl, Jr., A unifying Radon-Nikodym theorem for vector measures. J. Multivariate Anal. 3 (1973) 184–203. [Google Scholar]
  20. J.C. Dunn, Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals. SIAM J. Control Optim. 17 (1979) 187–211. [Google Scholar]
  21. J.C. Dunn, Convergence rates for conditional gradient sequences generated by implicit step length rules. SIAM J. Control Optim. 18 (1980) 473–487. [Google Scholar]
  22. J.C. Dunn and S. Harshbarger, Conditional gradient algorithms with open loop step size rules. J. Math. Anal. Appl. 62 (1978) 432–444. [Google Scholar]
  23. V. Duval, A characterization of the Non-Degenerate Source Condition in Super-Resolution. ArXiv e-prints (2017). [Google Scholar]
  24. V. Duval and G. Peyré, Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15 (2015) 1315–1355. [Google Scholar]
  25. A. Eftekhari and A. Thompson, Sparse inverse problems over measures: equivalence of the conditional gradient and exchange methods. SIAM J. Optim. 29 (2019) 1329–1349. [Google Scholar]
  26. V.V. Fedorov, Theory of optimal experiments, Probability and Mathematical Statistics, No. 12. Translated from the Russian and edited by W.J. Studden and E.M. Klimko. Academic Press, New York-London (1972). [Google Scholar]
  27. V.V. Fedorov and P. Hackl, Model-oriented design of experiments. Vol. 125 of Lecture Notes in Statistics. Springer-Verlag, New York (1997). [Google Scholar]
  28. A. Flinth, F. de Gournay and P. Weiss, On the linear convergence rates of exchange and continuous methods for total variation minimization. Math. Program. (2020). [Google Scholar]
  29. M. Frank and P. Wolfe, An algorithm for quadratic programming. Naval Res. Logist. Quart. 3 (1956) 95–110. [Google Scholar]
  30. G. Friesecke, F. Henneke and K. Kunisch, Frequency-sparse optimal quantum control. Math. Control Related Fields 8 (2018) 155. [Google Scholar]
  31. A.L. Gibbs and F.E. Su, On choosing and bounding probability metrics. Int. Stat. Rev./Revue Internationale de Statistique 70 (2002) 419–435. [Google Scholar]
  32. W. Hensgen, A simple proof of Singer’s representation theorem. Proc. Amer. Math. Soc. 124 (1996) 3211–3212. [Google Scholar]
  33. R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. [Google Scholar]
  34. R. Hettich and K.O. Kortanek, Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35 (1993) 380–429. [Google Scholar]
  35. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888 (2003). [Google Scholar]
  36. M. Hintermüller, A. Schiela and W. Wollner, The length of the primal-dual path in Moreau-Yosida-based path-following methods for state constrained optimal control. SIAM J. Optim. 24 (2014) 108–126. [Google Scholar]
  37. C.A. Holloway, An extension of the Frank and Wolfe method of feasible directions. Math. Program. 6 (1974) 14–27. [Google Scholar]
  38. J. Kiefer and J. Wolfowitz, Optimum designs in regression problems. Ann. Math. Statist. 30 (1959) 271–294. [Google Scholar]
  39. K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. [Google Scholar]
  40. K. Kunisch, P. Trautmann and B. Vexler, Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244. [Google Scholar]
  41. S. Lacoste-Julien and M. Jaggi, On the global linear convergence of Frank-Wolfe optimization variants, in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. NIPS’15. MIT Press, Cambridge, MA, USA (2015) 496–504. [Google Scholar]
  42. S. Lang, Real analysis. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, second ed. (1983). [Google Scholar]
  43. S. Lang, Real and functional analysis. Vol. 142 of Graduate Texts in Mathematics. Springer-Verlag, New York, third ed. (1993). [Google Scholar]
  44. E. Levitin and B. Polyak, Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics 6 (1966) 1–50. [Google Scholar]
  45. D. Leykekhman, B. Vexler and D. Walter, Numerical analysis of sparse initial data identification for parabolic problems. ESAIM: M2AN 54 (2020) 1139–1180. [EDP Sciences] [Google Scholar]
  46. P. Merino, I. Neitzel and F. Tröltzsch, On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90 (2011) 1047–1074. [Google Scholar]
  47. A. Milzarek, Numerical methods for a class of nonsmooth optimization problems and generalized variational inequalties, dissertation, Technische Universität München, München (2016). [Google Scholar]
  48. A. Milzarek and M. Ulbrich, A semismooth Newton method with multidimensional filter globalization for l1 -optimization. SIAM J. Optim. 24 (2014) 298–333. [Google Scholar]
  49. I. Molchanov and S. Zuyev, Steepest descent algorithms in a space of measures. Stat. Comput. 12 (2002) 115–123. [Google Scholar]
  50. I. Neitzel, K. Pieper, B. Vexler and D. Walter, A sparse control approach to optimal sensor placement in PDE-constrained parameter estimation problems. Num. Math. 143 (2019) 943–984. [Google Scholar]
  51. K. Pieper, Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems. PhD Dissertation, Technische Universität München (2015). http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20150420-1241413-1-4. [Google Scholar]
  52. K. Pieper, B.Q. Tang, P. Trautmann and D. Walter, Inverse point source location with the helmholtz equation on a bounded domain. Comput. Optim. Appl. 77 (2020) 213–249. [Google Scholar]
  53. L. Pronzato and A. Pázman, Design of experiments in nonlinear models: asymptotic normality, optimality criteria and small-sample properties. Lecture notes in statistics. Springer, New York, NY (2013). [Google Scholar]
  54. A. Shapiro, Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs. Math. Oper. Res. 10 (1985) 207–219. [Google Scholar]
  55. G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. [Google Scholar]
  56. D. Uciński, Optimal measurement methods for distributed parameter system identification. Systems and Control Series, CRC Press, Boca Raton, FL (2005). [Google Scholar]
  57. M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2002) 805–842 (2003). [Google Scholar]
  58. D. Walter, On sparse sensor placement for parameter identification problems with partial differential equations. Ph.D. thesis, Technische Universität München, (2019). http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20190604-1456274-1-8. [Google Scholar]
  59. P. Wolfe, Convergence theory in nonlinear programming. North-Holland, Amsterdam (1970). [Google Scholar]
  60. C.-F. Wu, Some algorithmic aspects of the theory of optimal designs. Ann. Stat. (1978) 1286–1301. [Google Scholar]
  61. C.-F. Wu, Some iterative procedures for generating nonsingular optimal designs. Commun. Stat. Theory Methods 7 (1978) 1399–1412. [Google Scholar]
  62. H.P. Wynn, The sequential generation of D-optimum experimental designs. Ann. Math. Statist. 41 (1970) 1655–1664. [Google Scholar]
  63. Y. Yu, D-optimal designs via a cocktail algorithm. Stat. Comput. 21 (2011) 475–481. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.