Free Access
Issue |
ESAIM: COCV
Volume 27, 2021
|
|
---|---|---|
Article Number | 39 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/cocv/2021037 | |
Published online | 30 April 2021 |
- D. Arcoya and L. Boccardo, Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities. Differ. Integr. Equ. 26 (2013) 119–128. [Google Scholar]
- D. Arcoya and L. Moreno-Mérida, Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity. Nonlinear Anal. 95 (2014) 281–291. [Google Scholar]
- L. Boccardo, A Dirichlet problem with singular and supercritical nonlinearities. Nonlinear Anal. 75 (2012) 4436–4440. [Google Scholar]
- L. Boccardo and J. Casado-Díaz, Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence. Asymptot. Anal. 86 (2014) 1–15. [Google Scholar]
- L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37 (2010) 363–380. [Google Scholar]
- J. Casado-Díaz and F. Murat, Semilinear problems with right-hand sides singular at u = 0 which change sig. To appear in Ann. Inst. Henri Poincaré, Anal. Non Linéaire. doi:10.1016/j.anihpc.2020.09.00. [Google Scholar]
- A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations. J. Convex Anal. 11 (2004) 147–162. [Google Scholar]
- A. Canino, M. Grandinetti and B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities. J. Differ. Equ. 255 (2013) 4437–4447. [Google Scholar]
- A. Canino, F. Esposito and B. Sciunzi, On the Höpf boundary lemma for singular semilinear elliptic equations. J. Differ. Equ. 266 (2019) 5488–5499. [Google Scholar]
- B. Brandolini, F. Chiacchio and C. Trombetti, Symmetrization for singular semilinear elliptic equations. Ann. Mat. Pura Appl. 193 (2014) 389–404. [Google Scholar]
- M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2 (1977) 193–222. [Google Scholar]
- G. Croce, An elliptic problem with two singularities. Asymptot. Anal. 78 (2012) 1–10. [Google Scholar]
- G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741–808. [Google Scholar]
- L.C. Evans, Partial differential equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). [Google Scholar]
- D. Giachetti, P.J. Martínez-Aparicio and F. Murat, On the definition of the solution to a semilinear elliptic problem with a strong singularity at u = 0. Nonlinear Anal. 177 (2018) 491–523. [Google Scholar]
- D. Giachetti, P.J. Martínez-Aparicio and F. Murat, Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u = 0. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018) 1395–1442. [Google Scholar]
- D. Giachetti, P.J. Martínez-Aparicio and F. Murat, A semilinear elliptic equation with a mild singularity at u = 0: existence and homogenization. J. Math. Pures Appl. 107 (2017) 41–77. [Google Scholar]
- D. Giachetti, F. Petitta and S. Segura de León, Elliptic equations having a singular quadratic gradient term and a changing sign datum. Comm. Pure Appl. Anal. 11 (2012) 1875–1895. [Google Scholar]
- E. Giusti, Direct methods in the calculus of variations. World Scientific, Singapore (2003). [Google Scholar]
- P.-L. Lions and F. Murat, Sur les solutions renormalisées d’équations elliptiques non linéaires. Unpublished paper. [Google Scholar]
- F. Oliva and F. Petitta, On singular elliptic equations with measure sources. ESAIM: COCV 22 (2016) 289–308. [EDP Sciences] [Google Scholar]
- L. Orsina and F. Petitta, A Lazer-McKenna type problem with measures. Differ. Integr. Equ. 29 (2016) 19–36. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.