Open Access
Volume 27, 2021
Article Number 88
Number of page(s) 73
Published online 09 August 2021
  1. A. Aman, Lp solution of reflected generalized BSDEs with non–Lipschitz coefficients. Random Oper. Stoch. Equ. 17 (2009) 201–219. [CrossRef] [Google Scholar]
  2. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei, Bucureşti, Romania (1976). [CrossRef] [Google Scholar]
  3. P. Briand and R. Carmona, BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13 (2000) 207–238. [CrossRef] [Google Scholar]
  4. P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, Lp solutions of backward stochastic differential equations. Stoch. Process. Appl. 108 (2003) 109–129. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.W.R. Darling and E. Pardoux, Backward SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 (1997) 1135–1159. [Google Scholar]
  6. R. Dobrushin, P. Groeneboom and M. Ledoux, Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilités de Saint-Flour – 1994. Springer, Berlin (1996). [Google Scholar]
  7. D. Duffie and L. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353–394. [CrossRef] [MathSciNet] [Google Scholar]
  8. N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE’s and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. [CrossRef] [MathSciNet] [Google Scholar]
  9. N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Hamadène and A. Popier, Lp-solutions for reflected backward stochastic differential equations. Stoch. Dyn. 12 (2012) 1150016 (35 pages). [CrossRef] [Google Scholar]
  11. T. Klimsiak, BSDEs with monotone generator and two irregular reflecting barriers. Bull. Sci. Math. 137 (2013) 268–321. [CrossRef] [Google Scholar]
  12. J.P. Lepeltier, A. Matoussi and M. Xu, Reflected backward stochastic differential equations under monotonicity and general increasing growth conditions. Adv. Appl. Probab. 37 (2005) 134–159. [CrossRef] [Google Scholar]
  13. L. Maticiuc and A. Răşcanu, A stochastic approach to a multivalued Dirichlet-Neumann problem. Stoch. Process. Appl. 120 (2010) 777–800. [CrossRef] [Google Scholar]
  14. L. Maticiuc and A. Răşcanu, Backward Stochastic Variational Inequalities on Random Interval. Bernoulli 21 (2015) 1166–1199. [CrossRef] [Google Scholar]
  15. L. Maticiuc and A. Răşcanu, On the continuity of the probabilistic representation of a semilinear Neumann–Dirichlet problem. Stoch. Process. Appl. 126 (2016) 572–607. [CrossRef] [Google Scholar]
  16. L. Maticiuc and A. Răşcanu, Viability of moving sets for a nonlinear Neumann problem. Nonlinear Anal. 66 (2007) 1587–1599. [CrossRef] [Google Scholar]
  17. E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs. In Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998). Kluwer Academic Publishers, Dordrecht (1999) 503–549. [CrossRef] [Google Scholar]
  18. E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55–61. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Pardoux and A. Răşcanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities. Stoch. Process. Appl. 76 (1998) 191–215. [CrossRef] [Google Scholar]
  20. E. Pardoux and A. Răşcanu, Backward stochastic variational inequalities. Stochastics 67 (1999) 159–167. [Google Scholar]
  21. E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Vol. 69 of Springer Series: Stochastic Modelling and Applied Probability. Springer, Berlin (2014). [CrossRef] [Google Scholar]
  22. A. Răşcanu, Existence for a class of stochastic parabolic variational inequalities. Stochastics 5 (1981) 201–239. [CrossRef] [Google Scholar]
  23. A. Rozkosz and L. Słomiński, Lp solutions of reflected BSDEs under monotonicity condition. Stoch. Process. Appl. 122 (2012) 3875–3900. [CrossRef] [Google Scholar]
  24. A. Rozkosz and L. Słomiński, Stochastic representation of entropy solutions of semilinear elliptic obstacle problems with measure data. Electr. J. Probab. 17 (2012) 1–27. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.