Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 87
Number of page(s) 21
DOI https://doi.org/10.1051/cocv/2021082
Published online 09 August 2021
  1. L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3 (2001) 39–92. [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press (2000). [Google Scholar]
  3. T.M. Apostol, Mathematical analysis; a modern approach to advanced calculus. Addison-Wesley Pub. Co., Reading, Mass. (1957). [Google Scholar]
  4. H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces. Vol. 6 of MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM). Applications to PDEs and optimization. Mathematical Programming Society (MPS), Philadelphia, PA (2006). [Google Scholar]
  5. L. Baratchart, D. Hardin, E. Lima, E. Saff and B. Weiss, Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions. Inverse Probl. 29 (2013) 015004. [Google Scholar]
  6. L. Baratchart, D. Hardin and C. Villalobos-Guillén, Divergence-free measures in the plane and inverse potential problems in divergence form. Preprint arXiv:2006.09072v2 (2020). [Google Scholar]
  7. L. Baratchart, C. Villalobos Guillén, D.P. Hardin, M.C. Northington and E.B. Saff, Inverse potential problems for divergence of measures with total variation regularization. Foundations of Computational Mathematics (2019). [Google Scholar]
  8. P. Bonicatto and N.A. Gusev, On the structure of divergence-free measures on ℝ2. Preprint: arXiv:1912.10936 (2019). [Google Scholar]
  9. K. Bredies and M. Carioni, Sparsity of solutions for variational inverse problems with finite-dimensional data. Calc. Var. 59 (2020). [Google Scholar]
  10. K. Bredies and H.K. Pikkarainen, Inverse problems in spaces of measures. ESAIM: COCV 19 (2013) 190–218. [CrossRef] [EDP Sciences] [Google Scholar]
  11. M. Burger and S. Osher, Convergence rates of convex variational regularization. Inverse Probl. 20 (2004) 1411–1421. [Google Scholar]
  12. E. De Giorgi, Complementi alla teoria della misura (n − 1)-dimensionale in uno spazio n-dimensionale, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa (1961). [Google Scholar]
  13. E. De Giorgi, Frontiere orientate di misura minima, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa (1961). [Google Scholar]
  14. F. Demengel and G. Demengel, Functional spaces for the theory of elliptic partial differential equations. Translated fromthe 2007 French original by Reinie Erné. Universitext, Springer, London; EDP Sciences, Les Ulis (2012). [Google Scholar]
  15. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (2015). [Google Scholar]
  16. H. Federer, The Gauss-Green theorem. Trans. Am. Math. Soc. 58 (1945) 44–76. [Google Scholar]
  17. H. Federer, A note on the Gauss-Green theorem. Proc. Am. Math. Soc. 9 (1958) 447–451. [Google Scholar]
  18. H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969). [Google Scholar]
  19. S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Birkhäuser (2013). [Google Scholar]
  20. C. Gerhards, On the unique reconstruction of induced spherical magnetizations. Inverse Probl. 32 (2015). [Google Scholar]
  21. B. Hoffmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Probl. 23 (2007) 987–1010. [Google Scholar]
  22. J.D. Jackson, Classical electrodynamics, John Wiley & Sons, Inc., New York-London-Sydney (1975), second ed. [Google Scholar]
  23. J.R. Kirtley and J.P. Wikswo, Scanning squid microscopy. Annu. Rev. Mater. Sci. 29 (1999) 117–148. [Google Scholar]
  24. E.A. Lima, B.P. Weiss, L. Baratchart, D.P. Hardin and E.B. Saff, Fast inversion of magnetic field maps of unidirectional planar geological magnetization. J. Geophys Res. 118 (2013) 2723–2752. [Google Scholar]
  25. P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Vol. 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). [Google Scholar]
  26. W. Rudin, Real and Complex Analysis. Mc Graw-Hill (1986). [Google Scholar]
  27. L. Schwartz, Théorie des distributions. Tome I, Actualités Sci. Ind., no. 1091 = Publ. Inst. Math. Univ. Strasbourg 9, Hermann & Cie., Paris (1950). [Google Scholar]
  28. S.K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. St. Petersburg Math. J. 5 (1994) 841–867. [Google Scholar]
  29. C. Villalobos Guillén A Measure Theoretic Approach for the Recovery of Remanent Magnetizations. Ph.D. thesis, Vanderbilt University (2019). [Google Scholar]
  30. B.P. Weiss, E.A. Lima, L.E. Fong and F.J. Baudenbacher, Paleomagnetic analysis using squid microscopy. J. Geophys Res. 112 (2007). [Google Scholar]
  31. W.P. Ziemer, Weakly differentiable functions. Vol. 120 of Graduate Texts in Mathematics. Sobolev spaces and functions of bounded variation. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.