Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 62
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2020092
Published online 21 June 2021
  1. H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces. MOS-SIAM Series on Optimization. SIAM (2006). [Google Scholar]
  2. T. Bayen, J.F. Bonnans and F.J. Silva, Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations. Trans. Amer. Math. Soc. 366 (2014) 2063–2087. [CrossRef] [Google Scholar]
  3. T. Bayen and F.J. Silva, Second order analysis for strong solutions in the optimal control of parabolic equations. SIAM J. Control Optim. 54 (2016) 819–844. [Google Scholar]
  4. L.M. Betz, Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations. SIAM J. Control Optim. 57 (2019) 4033–4062. [CrossRef] [Google Scholar]
  5. T. Betz and C. Meyer, Second-order sufficient optimality conditions for optimal control of static elastoplasticity with hardening. ESAIM: COCV 21 (2015) 271–300. [EDP Sciences] [Google Scholar]
  6. A. Binder, On an inverse problem arising in continuous casting of steel billets. Appl. Anal. 57 (1995) 341–366. [Google Scholar]
  7. J.F. Bonnans, Second-order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38 (1998) 305–325. [Google Scholar]
  8. J.F. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37 (1999) 1726–1741. [Google Scholar]
  9. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, Berlin, Heidelberg (2000). [Google Scholar]
  10. E. Casas, Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints. ESAIM: COCV 14 (2008) 575–589. [CrossRef] [EDP Sciences] [Google Scholar]
  11. E. Casas and V. Dhamo, Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. Numer. Math. 117 (2011) 115–145. [Google Scholar]
  12. E. Casas and V. Dhamo, Optimality conditions for a class of optimal boundary control problems with quasilinear elliptic equations. Control Cybernet. 40 (2011) 457–490. [Google Scholar]
  13. E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431–1454. [Google Scholar]
  14. E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48 (2009) 688–718. [Google Scholar]
  15. E. Casasand F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math.-Ver. 117 (2015) 3–44. [Google Scholar]
  16. M. Chipot, Elliptic Equations: An Introductory Course. Birkhäuser Verlag, Basel (2009). [Google Scholar]
  17. C. Christof and G. Wachsmuth, No-gap second-order conditions via a directional curvature functional. SIAM J. Optim. 28 (2018) 2097–2130. [Google Scholar]
  18. C. Christof and G. Wachsmuth, On second-order optimality conditions for optimal control problems governed by the obstacle problems. Optimization (2020) 1–41. [Google Scholar]
  19. A. Cianchi and V. Maz’ya, Global gradient estimates in elliptic problems under minimal data and domain regularity. Commun. Pure Appl. Anal. 14 (2015) 285–311. [Google Scholar]
  20. C. Clason, V.H. Nhu, and A. Rösch, Optimal control of a non-smooth quasilinear elliptic equation. Math. Control Related Fields (2020). [Google Scholar]
  21. A.L. Dontchev and R.T. Rockafellar, Implicit Functions and Solution Mappings. Springer Monographs in Mathematics. Springer (2014). [Google Scholar]
  22. H.W. Engl and T. Langthaler, Control of the solidification front by secondary cooling in continuous casting of steel. In Case studies in industrial mathematics, Volume 2 of European Consort. Math. Indust.. Teubner, Stuttgart (1988) 51–77. [Google Scholar]
  23. S.J. Fromm, Potential space estimates for Green potentials in convex domains. Proc. Am. Math. Soc. 119 (1993) 225–233. [Google Scholar]
  24. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, Heidelberg (2001). [Google Scholar]
  25. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program (1985). [Google Scholar]
  26. P. Kügler, Identification of a temperature dependent heat conductivity from single boundary measurements. SIAM J. Numer. Anal. 41 (2003) 1543–1563. [Google Scholar]
  27. B.T. Kien, V.H. Nhu and N.H. Son, Second-order optimality conditions for a semilinear elliptic optimal control problem with mixed pointwise constraints. Set-Valued Var. Anal 25 (2017) 177–210. [Google Scholar]
  28. K. Krumbiegel, I. Neitzel and A. Rösch, Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2 (2010) 222–246. [Google Scholar]
  29. K. Kunisch and D. Wachsmuth, Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities. ESAIM: COCV 18 (2012) 520–547. [CrossRef] [EDP Sciences] [Google Scholar]
  30. V. Maz’ya, Boundedness of the gradient of a solution to the Neumann–Laplace problem in a convex domain. C. R. Math. Acad. Sci. Paris 347 (2009) 517–520. [Google Scholar]
  31. A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints. SIAM J. Control Optim. 42 (2003) 138–154. [Google Scholar]
  32. A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 17 (2006) 776–794. [Google Scholar]
  33. S. Scholtes, Introduction to Piecewise Differentiable Equations. Springer Science & Business Media (2012). [Google Scholar]
  34. F. Tröltzsch, Optimal Control of Partial Differential Equations, volume 112 of Graduate Studies in Mathematics. Theory, methods and applications, Translated fromthe 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  35. N.D. Tuan, Sequence-based necessary second-order optimality conditions for semilinear elliptic optimal control problems with nonsmooth data. Positivity 23 (2019) 195–217. [Google Scholar]
  36. M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization. SIAM (2011). [Google Scholar]
  37. A. Visintin, Models of Phase Transitions. Birkhäuser, Boston (1996). [Google Scholar]
  38. G. Wachsmuth, Differentiability of implicit functions: Beyond the implicit function theorem. J. Math. Anal. Appl. 414 (2014) 259–272. [Google Scholar]
  39. S. Yang, D.-C. Chang, D. Yang and Z. Fu, Gradient estimates via rearrangements for solutions of some Schrödinger equations. Anal. Appl. 16 (2018) 339–361. [Google Scholar]
  40. E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-Point Theorems. Springer-Verlag, New York (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.