Open Access
Volume 27, 2021
Article Number 52
Number of page(s) 24
Published online 04 June 2021
  1. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures. J. Convex Anal. 4 (1997) 129–147. [Google Scholar]
  2. W. Arveson, An Invitation to C*-Algebras. Graduate Texts in Mathematics. Springer-Verlag, New York (1976). [Google Scholar]
  3. J.P. Aubin and H. Frankowska, Set-Valued Analysis Modern Birkhäuser Classics, Birkhäuser, Boston (1990). [Google Scholar]
  4. J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and Continuum Models of Phase Transitions. M. Rascle, D. Serre, and M. Slemrod. Springer, Berlin Heidelberg (1989) 207–215. [Google Scholar]
  5. S. Banach and S. Mazur, Zur theorie der linearen dimension. Stud. Math. 4 (1933) 100–112. [Google Scholar]
  6. A.C. Barroso, G. Bouchitté, G. Buttazzo and I. Fonseca, Relaxation of bulk and interfacial energies. Arch. Ratl. Mech. Anal. 135 (1996) 107–173. [Google Scholar]
  7. V.I. Bogachev, Measure Theory, vol. II. Springer, Berlin, Heidelberg (2007). [CrossRef] [Google Scholar]
  8. G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Ratl. Mech. Anal. 145 (1998) 51–98. [Google Scholar]
  9. G. Carita and E. Zappale, Relaxation for an optimal design problem with linear growth and perimeter penalization. Proc. Roy. Soc. Edinburgh 145 (2015) 223–268. [Google Scholar]
  10. B. Dacorogna, Weak continuity and weak lower semicontinuity of nonlinear functionals. Uspekhi Mat. Nauk 44 (1989) 35–98. [Google Scholar]
  11. R.J. DiPerna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667–689. [Google Scholar]
  12. R. Engelking, General topology. Vol. 6 of Sigma Series in Pure Mathematics. Heldermann Verlag Berlin (1989). [Google Scholar]
  13. I. Fonseca and S. Müller, Relaxation of quasiconvex functional in BV(ω, ℝp) for integrands f(x, u, ∇u). Arch. Ratl. Mech. Anal. 123 (1993) 1–49. [Google Scholar]
  14. I.M. Gelfand, Normierte Ringe. Rec. Math. [Mat. Sbornik] N.S. 9 (1941) 3–24. [Google Scholar]
  15. I.M. Gelfand and M.A. Naimark, On the imbedding of normed rings into the ring of operators on a Hilbert space. Math. Sbornik 12 (1943) 197–217. [Google Scholar]
  16. N. Hüngerbuhler, A refinement of Ball’s theorem on Young measures. New York J. Math. 3 (1997) 48–53. [Google Scholar]
  17. A. Kałamajska, On one generalization of a theorem by DiPerna and Majda. Math. Methods Appl. Sci. 29 (2006) 1307–1325. [Google Scholar]
  18. A. Kałamajska, On Young measures controlling discontinuous functions. J. Convex Anal. 13 (2006) 177–192. [Google Scholar]
  19. A. Kałamajska, Oscillation and concentration effects described by Young measures which control discontinuous functions. Topolog. Methods Nonlinear Anal. 31 (2008) 111–138. [Google Scholar]
  20. A. Kałamajska, On one method of improving weakly converging sequence of gradients. Asymptotic Anal. 62 (2009) 107–123. [Google Scholar]
  21. A. Kałamajska, On one extension of Decomposition Lemma dealing with weakly converging sequences of gradients with application to nonconvex variational problems. J. Convex Anal. 20 (2013) 545–571. [Google Scholar]
  22. A. Kałamajska and M. Kružik, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. [CrossRef] [EDP Sciences] [Google Scholar]
  23. J. Keesling, The one-dimensional Čech cohomology of the Higson compactification and its corona. Topol. Proc. 19 (1994) 129–148. [Google Scholar]
  24. P.A. Kozarzewski, On existence of the support of a Borel measure. Demonstratio Math. 76 (2018) 76–84. [Google Scholar]
  25. S. Krömer and M. Kruzik, Oscillations and concentrations up to the boundary. J. Convex Anal. 20 (2013) 723–752. [Google Scholar]
  26. Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Syberian Math. J. 9 (1968) 1039–1045. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.