Free Access
Volume 27, 2021
Article Number 40
Number of page(s) 24
Published online 30 April 2021
  1. G. Albi, Y.-P. Choi, M. Fornasier and D. Kalise, Mean field control hierarchy. Appl. Math. Optim. 76 (2017) 93–135. [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savare, Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. ETH Zürich. Birkhäuser Basel (2005). [Google Scholar]
  3. M. Bongini, M. Fornasier, F. Rossi and F. Solombrino, Mean-field pontryagin maximum principle. Opt. Theo. Appl. 175 (2017) 1–38. [Google Scholar]
  4. M. Burger, L. Caffarelli, P.A. Markowich and M.-T. Wolfram, On a boltzmann-type price formation model. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 469 (2013) 20130126. [Google Scholar]
  5. M. Burger, B. Düring, L.M. Kreusser, P.A. Markowich and C.-B. Schönlieb, Pattern formation of a nonlocal, anisotropic interaction model. Math. Models Methods Appl. Sci. 28 (2018) 409–451. [Google Scholar]
  6. M. Burger, M. Di Francesco, P.A. Markowich and M.-T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics. Disc. Cont. Dyn. Syst. B 19 (2014) 1311–1333. [Google Scholar]
  7. M. Burger, R. Pinnau, C. Totzeck and O. Tse, Mean-field optimal control and optimality conditions in the space of probability measures. SIAM: J. Control Optim. 59 (2021) 977–1006. [Google Scholar]
  8. M. Burger, R. Pinnau, C. Totzeck, O. Tse and A. Roth, Instantaneous control of interacting particle systems in the mean-field limit. J. Computat. Phys. 405 (2020) 109181. [Google Scholar]
  9. J.A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse, An analytical framework for a consensus-based global optimization method. Math. Mod. Meth. Appl. Sci. 28 (2018). [Google Scholar]
  10. J.A. Carrillo, B. Düring, L.M. Kreusser and C.-B. Schönlieb, Equilibria of an anisotropic nonlocal interaction equation: analysis and numerics. Preprint arXiv:1912.09337 (2019). [Google Scholar]
  11. J.A. Carrillo, B. Düring, L.M. Kreusser and C.-B. Schönlieb, Stability analysis of line patterns of an anisotropic interaction model. SIAM J. Appl. Dyn. Syst. 18 (2019) 1798–1845. [Google Scholar]
  12. P. Degond, M. Herty and J.G. Liu, Meanfield games and model predictive control. Commun. Math. Sci. 15 (2017) 1403–1422. [Google Scholar]
  13. M.R. D’Orsogna, Y.L. Chuang, A.L. Bertozzi and L.S. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96 (2006) 104302. [Google Scholar]
  14. B. Düring, C. Gottschlich, S. Huckemann, L.M. Kreusser and C.-B. Schönlieb, An anisotropic interaction model for simulating fingerprints. J. Math. Biol. 78 (2019) 2171–2206. [Google Scholar]
  15. B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 465 (2009) 3687–3708. [Google Scholar]
  16. R. Flamary and N. Courty, Pot: Python optimal transportlibrary (2017). [Google Scholar]
  17. G. Foderaro, S. Ferrari and T.A. Wettergren, Distributed optimal control for multi-agent trajectory optimization. Automatica 50 (2014) 149–154. [Google Scholar]
  18. M. Fornasier and F. Solombrino, Mean-field optimal control. ESAIM: Cont. Optim. Calcul. Variat. 20 (2014) 1123–1152. [Google Scholar]
  19. A. Gerisch and M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theoret. Biol. 250 (2008) 684–704. [Google Scholar]
  20. F. Golse, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, chapter On the Dynamics of Large Particle Systems in the Mean Field Limit. Springer International Publishing, Cham (2016), 1–144. [Google Scholar]
  21. M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow. Math. Methods Appl. Sci. 30 (2007) 153–169. [Google Scholar]
  22. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer (2009). [Google Scholar]
  23. L.M. Kreusser and M.-T. Wolfram, On anisotropic diffusion equations for label propagation. Preprint arXiv:2007.12516 (2020). [Google Scholar]
  24. M. Kücken and C. Champod, Merkel cells and the individuality of friction ridge skin. J. Theoret. Biol. 317 (2013) 229–237. [Google Scholar]
  25. B. Piccoli, F. Rossi and E. Trélat Control to flocking of the kinetic cucker–smale model. SIAM J. Math. Anal. 47 (2015) 4685–4719. [Google Scholar]
  26. R. Pinnau, C. Totzeck, O. Tse and S. Martin, A consensus-based model for global optimization and its mean-field limit. Math. Mod. Meth. Appl. Sci. 27 (2017). [Google Scholar]
  27. J.P. Taylor-King, B. Franz, C.A. Yates and R. Erban, Mathematical modelling of turning delays in swarm robotics. IMA J. Appl. Math. 80 (2015) 1454–1474. [Google Scholar]
  28. C. Totzeck, An anisotropic interaction model with collision avoidance. Kin. Rel. Mod. 13 (2019) 1219–1242. [Google Scholar]
  29. C. Totzeck and M.-T. Wolfram, Consensus-based global optimization with personal best. Math. Bio. Eng. 17 (2020) 6026–6044. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.