Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 103
Number of page(s) 24
DOI https://doi.org/10.1051/cocv/2021099
Published online 06 December 2021
  1. C.T. Anh and V.M. Toi, Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evol. Equ. Control Theory 6 (2017) 357–379. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Badra, Local controllability to trajectories of the magnetohydrodynamic equations. J. Math. Fluid Mech. 16 (2014) 631–660. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Barbu, T. Havârneanu, C. Popa and S.S. Sritharan, Local exact controllability for the magnetohydrodynamic equations revisited. Adv. Differ. Equ. 10 (2005) 481–504. [Google Scholar]
  4. C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates. In Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975). Lecture Notes in Math. Vol. 565 (1976) 1–13. [CrossRef] [Google Scholar]
  5. C. Bardos, C. Sulem and P.-L. Sulem, Longtime dynamics of a conductive fluid in the presence of a strong magnetic field. Trans. Am. Math. Soc. 305, (1988) 175–191. [CrossRef] [Google Scholar]
  6. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [Google Scholar]
  7. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Syst. 5 (1992) 295–312. [Google Scholar]
  8. J.-M. Coron, Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271–276. [Google Scholar]
  9. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1995/96) 35–75. [Google Scholar]
  10. J.-M. Coron, F. Marbach and F. Sueur, Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions. J. Eur. Math. Soc. (JEMS) 22 (2020) 1625–1673. [Google Scholar]
  11. J.-M. Coron, F. Marbach, F. Sueur and P. Zhang, Controllability of the Navier-Stokes equation in a rectangle with a little help of a distributed phantom force. Ann. Partial Differ. Eq. 5 (2019) 17. [Google Scholar]
  12. S. Ervedoza, O. Glass and S. Guerrero, Local exact controllability for the two- and three-dimensional compressible Navier-Stokes equations. Comm. Partial Differ. Equ. 41 (2016) 1660–1691. [CrossRef] [Google Scholar]
  13. S. Ervedoza, O. Glass, S. Guerrero and J.-P. Puel, Local exact controllability for the one-dimensional compressible Navier-Stokes equation. Arch. Ration. Mech. Anal. 206 (2012) 189–238. [Google Scholar]
  14. E. Fernández-Cara, M.C. Santos and D.A. Souza, Boundary controllability of incompressible Euler fluids with Boussinesq heat effects. Math. Control Signals Syst. 28 (2016) 7. [CrossRef] [Google Scholar]
  15. I.C. Galan, Approximate controllability of the magnetohydrodynamic equations on the three-dimensional torus. J. Optim. Theory Appl. 159 (2013) 231–245. [CrossRef] [MathSciNet] [Google Scholar]
  16. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences] [Google Scholar]
  17. T. Havârneanu, C. Popa and S.S. Sritharan, Exact internal controllability for the magnetohydrodynamic equations in multi-connected domains. Adv. Differ. Equ. 11 (2006) 893–929. [Google Scholar]
  18. T. Havârneanu, C. Popa and S.S. Sritharan, Exact internal controllability for the two-dimensional magnetohydrodynamic equations. SIAM J. Control Optim. 46 (2007) 1802–1830. [CrossRef] [MathSciNet] [Google Scholar]
  19. N. Molina, Local exact boundary controllability for the compressible Navier-Stokes equations. SIAM J. Control Optim. 57 (2019) 2152–2184. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.G. Schmidt, On a magnetohydrodynamic problem of Euler type. J. Differ. Equ. 74 (1988) 318–335. [CrossRef] [Google Scholar]
  21. P. Secchi, On the equations of ideal incompressible magnetohydrodynamics. Rend. Sem. Mat. Univ. Padova 90 (1993) 103–119. [MathSciNet] [Google Scholar]
  22. Q. Tao, Local exact controllability for the planar compressible magnetohydrodynamic equations. SIAM J. Control Optim. 56 (2018) 4461–4487. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Turcu, C. Bonchiş and M. Najim, Vector partitions, multi-dimensional Faà di Bruno formulae and generating algorithms. Discr. Appl. Math. 272 (2020) 90–99. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.