Open Access
Volume 27, 2021
Article Number 102
Number of page(s) 36
Published online 03 November 2021
  1. A. Ajami, M. Brouche, J.P. Gauthier and L. Sacchelli, Output stabilization of military UAV in the unobservable case, in 2020 IEEE Aerospace Conference (2020) 1–6. [Google Scholar]
  2. A. Ajami, J.P. Gauthier and L. Sacchelli, Dynamic output stabilization of control systems: an unobservable kinematic drone model. To appear in Automatica (2020). [Google Scholar]
  3. V. Andrieu and L. Praly, On the existence of a Kazantzis–Kravaris/Luenberger observer. SIAM J. Control Optim. 45 (2006) 432–456. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Andrieu and L. Praly, A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica 45 (2009) 1789–1798. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.O. Barut and R. Ŗaczka, Theory of group representations and applications. World Scientific Publishing Co., Singapore, second ed. (1986). [CrossRef] [Google Scholar]
  6. P. Bernard, L. Praly, V. Andrieu and H. Hammouri, On the triangular canonical form for uniformly observable controlled systems. Automatica 85 (2017) 293–300. [CrossRef] [Google Scholar]
  7. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011). [Google Scholar]
  8. L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Luenberger observers for infinite-dimensional systems, back and forth nudging and application to a crystallization process. To appear in: SIAM J. Control Optim. (2020). [Google Scholar]
  9. L. Brivadis, J.-P. Gauthier, L. Sacchelli and U. Serres, Avoiding observability singularities in output feedback bilinear systems. Working paper orpreprint (2019). [Google Scholar]
  10. L. Brivadis and L. Sacchelli, A switching technique for output feedback stabilization at an unobservable target. Working paper orpreprint (2021). [Google Scholar]
  11. L. Brivadis, L. Sacchelli, V. Andrieu, J.-P. Gauthier and U. Serres, From local to global asymptotic stabilizability for weakly contractive control systems. Automatica 124 (2020) 109308. [Google Scholar]
  12. F. Celle, J.-P. Gauthier, D. Kazakos and G. Sallet, Synthesis of nonlinear observers: a harmonic-analysis approach. Math. Syst. Theory 22 (1989) 291–322. [CrossRef] [Google Scholar]
  13. P. Combes, A.K. Jebai, F. Malrait, P. Martin and P. Rouchon, Adding virtual measurements by signal injection, in 2016 American Control Conference (ACC) (2016) 999–1005. [CrossRef] [Google Scholar]
  14. J.-M. Coron, On the stabilization of controllable and observable systems by an output feedback law. Math. Control Signals Syst. 7 (1994) 187–216. [CrossRef] [Google Scholar]
  15. J.-M. Coron, Relations entre commandabilité et stabilisations non linéaires, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991). Vol. 299 of Pitman Research Notes In Mathematics Series, Longman Scientific & Technical, Harlow (1994) 68–86. [Google Scholar]
  16. K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. Vol. 194 of Graduate Texts in Mathematics. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Springer-Verlag, New York (2000). [Google Scholar]
  17. E. Flayac, Coupled methods of nonlinear estimation and control applicable to terrain-aided navigation, Thèse de doctorat dirigée par Jean, Frédéric Mathématiques appliquées. Ph.D. thesis, Université Paris-Saclay (ComUE) (2019). [Google Scholar]
  18. J.-P. Gauthier and I. Kupka, Deterministic observation theory and applications. Cambridge University Press, Cambridge (2001). [CrossRef] [Google Scholar]
  19. T.-B. Hoang, W. Pasillas-Lépine and W. Respondek, A switching observer for systems with linearizable error dynamics via singular time-scaling, in MTNS 2014, Groningen, Netherlands (2014). [Google Scholar]
  20. K. Ito and F. Kappel, Evolution equations and approximations. Vol. 61 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co., Inc., River Edge, NJ (2002). [CrossRef] [Google Scholar]
  21. S. Jafarpour, P. Cisneros-Velarde and F. Bullo, Weak and semi-contraction for network systems and diffusively-coupled oscillators. IEEE Trans. Autom. Control (2021) 1–1. [CrossRef] [Google Scholar]
  22. P. Jouan and J.P. Gauthier, Finite singularities of nonlinear systems: output stabilization, observability, and observers. J. Dyn. Control Syst. 2 (1996) 255–288. [CrossRef] [Google Scholar]
  23. V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differ. Equ. 28 (1978) 381–389. [CrossRef] [Google Scholar]
  24. M.A. Krasnosel’skiĭ and P.P. Zabreĭko, Geometrical methods of nonlinear analysis. Vol. 263 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Translated from the Russian by Christian C. Fenske. Springer-Verlag, Berlin (1984). [CrossRef] [Google Scholar]
  25. M. Krichman, E.D. Sontag and Y. Wang, Input-output-to-state stability. SIAM J. Control Optim. 39 (2001) 1874–1928. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Laforgia, Inequalities for Bessel functions. J. Comput. Appl. Math. 15 (1986) 75–81. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Lagache, U. Serres and J. Gauthier, Exact output stabilization at unobservable points: Analysis via an example, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017) 6744–6749. [CrossRef] [Google Scholar]
  28. I.R. Manchester and J.-J.E. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle. Syst. Control Lett. 63 (2014) 32–38. [CrossRef] [Google Scholar]
  29. F. Mazenc and L. Praly, Adding integrations, saturated controls, and stabilization for feedforward systems. IEEE Trans. Autom. Control 41 (1996) 1559–1578. [CrossRef] [Google Scholar]
  30. R. Narasimhan, Introduction to the theory of analytic spaces. Lecture Notes in Mathematics, No. 25. Springer-Verlag, Berlin-New York (1966). [CrossRef] [Google Scholar]
  31. D. Nešić and E. Sontag, Input-to-state stabilization of linear systems with positive outputs. Syst. Control Lett. 35 (1998) 245–255. [CrossRef] [Google Scholar]
  32. E. Neuman, Inequalities involving Bessel functions of the first kind. J. Inequal. Pure Appl. Math. 5 (2004) 94. [Google Scholar]
  33. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). [Google Scholar]
  34. A. Rapaport and D. Dochain, A robust asymptotic observer for systems that converge to unobservable states–a batch reactor case study. IEEE Trans. Autom. Control 65 (2020) 2693–2699. [CrossRef] [Google Scholar]
  35. L. Sacchelli, L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Dynamic output feedback stabilization of non-uniformly observable dissipative systems. To appear in IFAC WC 2020 (2020). [Google Scholar]
  36. H. Shim and A. Teel, Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback. Automatica 39 (2003) 441–454. [CrossRef] [MathSciNet] [Google Scholar]
  37. C.L. Siegel, Über einige Anwendungen diophantischer Approximationen [reprint of Abhandlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1], in On some applications of Diophantine approximations, vol. 2 of Quad./Monogr., Ed. Norm., Pisa (2014) 81–138. [CrossRef] [Google Scholar]
  38. E.D. Sontag, Conditions for abstract nonlinear regulation. Inf. Control 51 (1981) 105–127. [CrossRef] [Google Scholar]
  39. D. Surroop, P. Combes, P. Martin and P. Rouchon, Adding virtual measurements by PWM-induced signal injection, in 2020 American Control Conference (ACC) (2020) 2692–2698. [CrossRef] [Google Scholar]
  40. A. Teel and L. Praly, Global stabilizability and observability imply semi-global stabilizability by output feedback. Syst. Control Lett. 22 (1994) 313–325. [CrossRef] [Google Scholar]
  41. A. Teel and L. Praly, Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 (1995) 1443–1488. [CrossRef] [MathSciNet] [Google Scholar]
  42. A.R. Teel and L. Praly, A smooth Lyapunov function from a class-𝒦ℒ estimate involving two positive semidefinite functions. ESAIM: COCV 5 (2000) 313–367. [CrossRef] [EDP Sciences] [Google Scholar]
  43. M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2009). [Google Scholar]
  44. N.J. Vilenkin, Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22. American Mathematical Society, Providence, R. I. (1968). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.