Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 101
Number of page(s) 47
DOI https://doi.org/10.1051/cocv/2021098
Published online 26 October 2021
  1. E. Abi Jaber, E. Miller and H. Pham, Linear–Quadratic control for a class of stochastic Volterra equations: solvability and approximation. Preprint arXiv:1911.01900 (2020). [Google Scholar]
  2. N. Agram, Dynamic risk measure for BSVIE with jumps and semimartingale issues. Stoch. Anal. Appl. 37 (2019) 361–376. [Google Scholar]
  3. N. Agram and B. Øksendal, Mallivain calculus and optimal control of stochastic Volterra equations. J. Optim. Theory Appl. 167 (2015) 1070–1094. [Google Scholar]
  4. J. Appleby, pth mean integrability and almost sure asymptotic stability of solutions of Itô–Volterra equations. J. Integral Equ. Appl. 15 (2003) 321–341. [Google Scholar]
  5. P. Beissner and E. Rosazza Gianin, The term structure of Sharpe ratios and arbitrage-free asset pricing in continuous time. Probab. Uncertain. Quantit. Risk 6 (2021) 23–52. [Google Scholar]
  6. M.A. Berger and V.J. Mizel, Volterra equations with Itô integrals—I. J. Integral Equ. 2 (1980) 187–245. [Google Scholar]
  7. S. Chen and J. Yong, A linear quadratic optimal control problem for stochastic Volterra integral equations. Control theory and related topics – in memory of professor Xunjing Li, Fudan university, China. (2007) 44–66. [Google Scholar]
  8. T.L. Cromer, Asymptotically periodic solutions to Volterra integral equations in epidemic models. J. Math. Anal. Appl. 110 (1985) 483–494. [Google Scholar]
  9. J.P.C. Dos Santos, H. Henríquez and E. Hernández, Existence results for neutral integro-differential equations with unbounded delay. J. Integr. Equ. Appl. 23 (2011) 289–330. [Google Scholar]
  10. M. Fuhrman and Y. Hu, Infinite horizon BSDEs in infinite dimensions with continuous driver and applications. J. Evol. Equ. 6 (2006) 459–484. [Google Scholar]
  11. M. Fuhrman and G. Tessitore Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. Ann. Probab. 32 (2004) 607–660. [Google Scholar]
  12. J. Gatheral, T. Jaisson, and M. Rosenbaum, Volatility is rough. Quant. Finance 18 (2018) 933–949. [Google Scholar]
  13. Y. Hamaguchi, Extended backward stochastic Volterra integral equations and their applications to time-inconsistent stochastic recursive control problems. Math. Control Relat. Fields 11 (2021) 197–242. [Google Scholar]
  14. Y. Hamaguchi, On the maximum principle for optimal control problems of stochastic Volterra integral equations with delay. Preprint: arXiv:2109.06092 (2021). [Google Scholar]
  15. C. Hernández and D. Possamaï, Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents. Preprint: arXiv:2002.12572 (2021). [Google Scholar]
  16. H. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). [Google Scholar]
  17. Y. Hu and B. Øksendal, Linear Volterra backward stochastic integral equations. Stochastic Process. Appl. 129 (2019) 626–633. [Google Scholar]
  18. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland, Amsterdam (2006). [Google Scholar]
  19. E. Kromer and L. Overbeck, Differentiability of BSVIEs and dynamic capital allocations. Int. J. Theor. Appl. Finance 20 (2017) 1–26. [Google Scholar]
  20. J. Lin, Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stoch. Anal. Appl. 20 (2002) 165–183. [Google Scholar]
  21. P. Lin and J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle. SIAM J. Control Optim. 58 (2020) 136–164. [Google Scholar]
  22. J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702, Springer-Verlag, New York (1999). [Google Scholar]
  23. X. Mao and M. Riedle, Mean square stability of stochastic Volterra integro-differential equations. Syst. Control Lett. 55 (2006) 459–465. [Google Scholar]
  24. B. Maslowski and P. Veverka, Sufficient stochastic maximum principle for discounted control problem. Appl. Math. Optim. 70 (2014) 225–252. [Google Scholar]
  25. C. Orrieri and P. Veverka, Necessary stochastic maximum principle for dissipative systems on infinite time horizon. ESAIM: COCV 23 (2017) 337–371. [Google Scholar]
  26. G. Pang and E. Pardoux, Functional limit theorems for non-Markovian epidemic models. Preprint: arXiv:2003.03249 (2021). [Google Scholar]
  27. E. Pardoux, BSDEs weak convergence and homogenizations of semilinear PDEs, in Nonlinear Analysis Differential Equations and Control, edited by F.H. Clark, R.J. Stern (1999) 503–509. [Google Scholar]
  28. S. Peng and Y. Shi, Infinite horizon forward-backward stochastic differential equations. Stochastic Process. Appl. 85 (2000) 75–92. [Google Scholar]
  29. R. Sakthivel, J.J. Nieto and N.I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwan J. Math. 14 (2010) 1777–1797. [Google Scholar]
  30. Y. Shi, T. Wang and J. Yong, Mean-field backward stochastic Volterra integral equations. Discrete Contin. Dyn. Syst. 18 (2013) 1929–1967. [Google Scholar]
  31. Y. Shi, T. Wang and J. Yong, Optimal control problems of forward-backward stochastic Volterra integral equations. Math. Control Relat. Fields 5 (2015) 613–649. [Google Scholar]
  32. H. Wang, J. Sun and J. Yong, Recursive utility processes, dynamic risk measures and quadratic backward stochastic Volterra integral equations. Appl. Math. Optim. 84 (2021) 145–190. [Google Scholar]
  33. H. Wang and J. Yong, Time-inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations. ESAIM: COCV 27 (2021). [Google Scholar]
  34. H. Wang, J. Yong and J. Zhang, Path dependent Feynman–Kac formula for forward backward stochastic Volterra integral equations. To appear Ann. Inst. Henri Poincaré Probab. Stat. Preprint arXiv:2004.05825 (2021). [Google Scholar]
  35. T. Wang, Linear quadratic control problems of stochastic Volterra integral equations. ESAIM: COCV 24 (2018) 1849–1879. [EDP Sciences] [Google Scholar]
  36. T. Wang, Necessary conditions of Pontraygin’s type for general controlled stochastic Volterra integral equations. ESAIM: COCV 26 (2020) 16. [Google Scholar]
  37. T. Wang and J. Yong, Comparison theorems for some backward stochastic Volterra integral equations. Stochastic Process. Appl. 125 (2015) 1756–1798. [Google Scholar]
  38. T. Wangand H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions. SIAM J. Control Optim. 55 (2017) 2574–2602. [Google Scholar]
  39. Y. Wang, J. Xu and P.E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative. Nonlinear Anal. 135 (2016) 205–222. [Google Scholar]
  40. Z. Wu and F. Zhang, Maximum principle for stochastic recursive optimal control problems involving impulse controls. Abstr. Appl. Anal. 32 (2012 1–16. [Google Scholar]
  41. J. Yin, On solutions of a class of infinite horizon FBSDE’s. Stat. Probab. Lett. 78 (2008) 2412–2419. [Google Scholar]
  42. J. Yong, Backward stochastic Volterra integral equations and some related problems. Stoch. Anal. Appl. 116 (2006) 779–795. [Google Scholar]
  43. J. Yong, Continuous-time dynamic risk measures by backward stochastic Volterra integral equations. Appl. Anal. 86 (2007) 1429–1442. [Google Scholar]
  44. J. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations. Probab. Theory Related Fields 142 (2008) 2–77. [Google Scholar]
  45. J. Zhang, Backward Stochastic Differential Equations; From Linear to Fully Nonlinear Theory. Springer (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.