Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 18
Number of page(s) 29
DOI https://doi.org/10.1051/cocv/2020090
Published online 22 March 2021
  1. F. Almgren, J.E. Taylor and L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31 (1993) 387–438. [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in mathematics. ETH Zürich, Birkhäuser (2005). [Google Scholar]
  3. A. Braides, Local Minimization, Variational Evolution and Γ-Convergence. Vol. 2094 of Lecture Notes in Mathematics. Springer (2012). [Google Scholar]
  4. L. Chizat and S. Di Marino A tumor growth model of Hele-Shaw type as a gradient flow. ESAIM: COCV 26 (2020) 103. [EDP Sciences] [Google Scholar]
  5. L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, An interpolating distance between optimal transport and Fisher–Rao metrics. Found. Comput. Math. 18 (2018) 1–44. [CrossRef] [Google Scholar]
  6. L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: dynamic and Kantorovich formulations. J. Funct.Anal. 274 (2018) 3090–3123. [Google Scholar]
  7. E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for PDE and Applications, edited by C. Baiocchi and J.L. Lions. Masson (1993) 81–98. [Google Scholar]
  8. E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180–187. [Google Scholar]
  9. M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity. Nonlinear Anal. 9 (1985) 1401–1443. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Fleißner, Gamma-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach. ESAIM: COCV 25 (2019) 28. [EDP Sciences] [Google Scholar]
  11. F. Fleißner, A note on the differentiability of the Hellinger-Kantorovich distances. Preprint arXiv:2007.07225 (2020). [Google Scholar]
  12. F. Fleißner and G. Savaré, Reverse approximation of gradient flows as minimizing movements: a conjecture by De Giorgi. Annali della Scuola Normale di Pisa - Classe di Scienze 20 (2020) 677–720. [Google Scholar]
  13. I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer Science & Business Media (2007). [Google Scholar]
  14. T.O. Gallouët and L. Monsaingeon, A JKO splitting scheme for Kantorovich–Fisher–Rao gradient flows. SIAM J. Math. Anal. 49 (2017) 1100–1130. [CrossRef] [Google Scholar]
  15. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. [Google Scholar]
  16. R. Jordan, D. Kinderlehrer and F. Otto, Free energy and the Fokker-Planck equation. Physica D 107 (1997) 265–271. [Google Scholar]
  17. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck Equation. SIAM J. Math. Anal. 29 (1998) 1–17. [Google Scholar]
  18. S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A fitness-driven cross-diffusion system from population dynamics as a gradient flow. J. Differ. Equ. 261 (2016) 2784–2808. [Google Scholar]
  19. S. Kondratyev, L. Monsaingeon and D. Vorotnikov, et al., A new optimal transport distance on the space of finite Radon measures. Adv. Differ. Equ. 21 (2016) 1117–1164. [Google Scholar]
  20. S. Kondratyev and D. Vorotnikov, Nonlinear Fokker-Planck equations with reaction as gradient flows of the free energy. J. Funct. Anal. 278 (2020) 108310. [Google Scholar]
  21. M. Liero, A. Mielke and G. Savaré, On geodesic λ-convexity with respect to the Hellinger-Kantorovich distance, in preparation. [Google Scholar]
  22. M. Liero, A. Mielke and G. Savaré, Optimal transport in competition with reaction: the Hellinger–Kantorovich distance and geodesic curves. SIAM J. Math. Anal. 48 (2016) 2869–2911. [CrossRef] [Google Scholar]
  23. M. Liero, A. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures. Invent. Math. 211 (2018) 969–1117. [Google Scholar]
  24. A. Marino, C. Saccon and M. Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 281–330. [Google Scholar]
  25. A. Mielke, Differential, energetic, and metric formulations for rate-independent processes. Springer (2011). [Google Scholar]
  26. A. Mielke, A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329. [Google Scholar]
  27. A. Mielke and F. Rindler, Reverse approximation of energetic solutions to rate-independent processes. NoDEA Nonlinear Differ. Equ. Appl. 16 (2009) 17–40. [Google Scholar]
  28. A. Mielke, R. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. 18 (2016) 2107–2165. [CrossRef] [Google Scholar]
  29. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26 (2001) 101–174. [Google Scholar]
  30. C. Villani, Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [CrossRef] [Google Scholar]
  31. C. Villani, Optimal transport. Old and new. Vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.