Open Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 107
Number of page(s) 15
DOI https://doi.org/10.1051/cocv/2021105
Published online 21 December 2021
  1. S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ratl. Mech. Anal. 217 (2015) 413–437. [Google Scholar]
  2. S. Conti and F. Gmeineder, 𝒜-quasiconvexity and partial regularity. Preprint arXiv:2009.13820 (2020). [Google Scholar]
  3. B. Dacorogna, Weak continuity and weak lower semi-continuity of non-linear functionals. Springer-Verlag (1982). [Google Scholar]
  4. H.P. Decell, Jr., An application of the Cayley-Hamilton theorem to generalized matrix inversion. SIAM Rev. 7 (1965) 526–528. [Google Scholar]
  5. C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ratl. Mech. Anal. 195 (2010) 225–260. [Google Scholar]
  6. L. De Rosa, D. Serre and R. Tione, On the upper semicontinuity of a quasiconcave functional. J. Funct. Anal. 279 (2020) Art. 108660 (35 pp.). [Google Scholar]
  7. L. De Rosa and R. Tione, On a question of D. Serre. ESAIM: COCV 26 (2020) Paper No. 97 (11 pp.). [Google Scholar]
  8. I. Fonseca and S. Müller, 𝒜-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. [Google Scholar]
  9. L. Grafakos, Vol. 2 of Classical fourier analysis. Springer, New York (2008). [Google Scholar]
  10. K. Koumatos, F. Rindler and E. Wiedemann, Orientation-preserving Young measures. Q. J. Math. 67 (2016) 439–466. [Google Scholar]
  11. K. Koumatos and A. Vikelis, 𝒜-quasiconvexity Gårding inequalities and applications in PDE constrained problems in dynamics and statics. SIAM J. Math. Anal. 53 (2021) 4178–4211. [Google Scholar]
  12. V. Maz’ya, Sobolev spaces. Springer (2013). [Google Scholar]
  13. C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25–53. [Google Scholar]
  14. F. Murat, Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978) 489–507. [Google Scholar]
  15. B. Răiţa, Potentials for 𝒜-quasiconvexity. Calc. Var. Partial Differ. Equ. 58 (2019) Paper No. 105 (16 pp.). [Google Scholar]
  16. D. Serre, Divergence-free positive symmetric tensors and fluid dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) 1209–1234. [Google Scholar]
  17. D. Serre, Multi-dimensional scalar conservation laws with unbounded integrable initial data. arXiv:1807.10474 (2018). [Google Scholar]
  18. D. Serre, Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics. J. Math. Pures Appl. 127 (2019) 67–88. [Google Scholar]
  19. D. Serre, Estimating the number and the strength of collisions in molecular dynamics. arXiv:1903.05866 (2019). [Google Scholar]
  20. D. Serre and L. Silvestre, Multi-dimensional Burgers equation with unbounded initial data: well-posedness and dispersive estimates. Arch. Ratl. Mech. Anal. 234 (2019) 1391–1411. [Google Scholar]
  21. E.M. Stein, Vol. 2 of Singular integrals and differentiability properties of functions. Princeton University Press (1970). [Google Scholar]
  22. L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires. In Journées d‘Analyse Non Linéaire, 228–241, Lecture Notes in Math. 665. Springer, Berlin (1978). [Google Scholar]
  23. L. Tartar, Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, 4, 136–212, Res. Notes in Math. 39, Pitman, Boston/London (1979). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.