Open Access
Volume 28, 2022
Article Number 19
Number of page(s) 41
Published online 01 March 2022
  1. A. Agrachev, D. Barilari and L. Rizzi, Curvature: a variational approach. Mem. Amer. Math. Soc. 256 (2018) v+142. [Google Scholar]
  2. A.A. Agrachev and R.V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J. Dyn. Control Systems 3 (1997) 343–389. [CrossRef] [Google Scholar]
  3. A. Agrachev, D. Barilari and U. Boscain, A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, With an appendix by Igor Zelenko. Vol. 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2020). [Google Scholar]
  4. A. Agrachev and P. Lee, Optimal transportation under nonholonomic constraints. Trans. Amer. Math. Soc. 361 (2009) 6019–6047. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.A. Agrachev, D. Barilari and E. Paoli, Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. Ann. Inst. Fourier (Grenoble) 69 (2019) 1187–1228. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). [CrossRef] [Google Scholar]
  7. A.A. Ardentov, È Le Donne and Y.L. Sachkov, A sub-Finsler problem on the Cartan group. Tr. Mat. Inst. Steklova 304 (2019) 49–67. [CrossRef] [Google Scholar]
  8. A.A. Ardentov, L.V. Lokutsievskiy and Y.L. Sachkov, Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry. ESAIM: COCV 27 (2021) 52. [Google Scholar]
  9. D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry. Vol. 200 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000). [Google Scholar]
  10. D. Barilari, Y. Chitour, F. Jean, D. Prandi and M. Sigalotti, On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures. J. Math. Pures Appl. (9) 133 (2020) 118–138. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Barilari and L. Rizzi, Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM: COCV 22 (2016) 439–472. [CrossRef] [EDP Sciences] [Google Scholar]
  12. D. Barilari, U. Boscain, E. Le Donne and M. Sigalotti, Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions. J. Dyn. Control Syst. 23 (2017) 547–575. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Barilari and L. Rizzi, Sub-Riemannian interpolation inequalities. Invent. Math. 215 (2019) 977–1038. [CrossRef] [MathSciNet] [Google Scholar]
  14. V.N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. I. Sibirsk. Mat. Zh. 29 (1988) 17–29. [Google Scholar]
  15. V.N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. II. Sibirsk. Mat. Zh. 30 (1989) 14–28, 225. [Google Scholar]
  16. V.N. Berestovskiĭ and I.A. Zubareva, Extremals of a left-invariant sub-Finsler metric on the Engel group. Sibirsk. Mat. Zh. 61 (2020) 735–751. [CrossRef] [MathSciNet] [Google Scholar]
  17. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Burago, Y. Burago and S. Ivanov, A course in metric geometry. Vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). [Google Scholar]
  19. Ş. Cobzaş, Functional analysis in asymmetric normed spaces. Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel (2013). [Google Scholar]
  20. N. Cordova, R. Fukuoka and E.A. Neves, Sequence of induced Hausdorff metrics on Lie groups. Bull. Braz. Math. Soc. (N.S.) 51 (2020) 509–530. [Google Scholar]
  21. R. Fukuoka, A large family of projectively equivalent C0-Finsler manifolds. Tohoku Math. J. 72 (2020) 725–750. [CrossRef] [Google Scholar]
  22. R. Fukuoka and A.M. Setti, Mollifier smoothing of C0-Finsler structures. Ann. Mat. Pura Appl. (4) 200 (2021) 595–639. [CrossRef] [MathSciNet] [Google Scholar]
  23. I.A. Gribanova, The quasihyperbolic plane. Sibirsk. Mat. Zh. 40 (1999) 288–301, ii. [Google Scholar]
  24. E. Hakavuori, Infinite geodesics and isometric embeddings in Carnot groups of step 2. SIAM J. Control Optim. 58 (2020) 447–461. [CrossRef] [MathSciNet] [Google Scholar]
  25. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions. Springer-Verlag, Berlin (2001). Abridged version of ıt Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and ıt II [ibid.; MR1295240 (95m:90002)]. [Google Scholar]
  26. P.W.Y. Lee, Displacement interpolations from a Hamiltonian point of view. J. Funct. Anal. 265 (2013) 3163–3203. [CrossRef] [MathSciNet] [Google Scholar]
  27. L.V. Lokutsievskiy, Convex trigonometry with applications to sub-Finsler geometry. arXiv:1807.08155 (2020). [Google Scholar]
  28. V.S. Matveev and M. Troyanov, The Binet-Legendre metric in Finsler geometry. Geom. Topol. 16 (2012) 2135–2170. [Google Scholar]
  29. A.C.G. Mennucci, On asymmetric distances. Anal. Geom. Metr. Spaces 1 (2013) 200–231. [CrossRef] [MathSciNet] [Google Scholar]
  30. A.C.G. Mennucci, Geodesics in asymmetric metric spaces. Anal. Geom. Metr. Spaces 2 (2014) 115–153. [MathSciNet] [Google Scholar]
  31. S.-I. Ohta, On the curvature and heat flow on Hamiltonian systems. Anal. Geom. Metr. Spaces 2 (2014) 81–114. [MathSciNet] [Google Scholar]
  32. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes, Translated by D. E. Brown. A Pergamon Press Book. The Macmillan Co., New York (1964). [Google Scholar]
  33. H.L. Royden, Real analysis, third ed., Macmillan Publishing Company, New York (1988). [Google Scholar]
  34. Yu. Sachkov, Optimal bang-bang trajectories in sub-Finsler problem on the Cartan group. Russ. J. Nonlinear Dyn. 14 (2018) 583–593. [MathSciNet] [Google Scholar]
  35. Yu. Sachkov, Optimal bang-bang trajectories in sub-Finsler problems on the Engel group. Russ. J. Nonlinear Dyn. 16 (2020) 355–367. [MathSciNet] [Google Scholar]
  36. A.M. Setti, Smoothing of C0-Finsler structures, Ph.D. thesis, State University of Maringá (2019). State University of Maringá, In Portuguese. [Google Scholar]
  37. R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). [Google Scholar]
  38. F.W. Warner, Foundations of differentiable manifolds and Lie groups. Vol. 94 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin (1983), Corrected reprint of the 1971 edition. [CrossRef] [Google Scholar]
  39. I. Zelenko and C. Li, Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differ. Geom. Appl. 27 (2009) 723–742. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.