Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 20
Number of page(s) 22
DOI https://doi.org/10.1051/cocv/2022014
Published online 03 March 2022
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces. Elsevier (2003). [Google Scholar]
  2. A. Armaou and P.D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation. Physica D 137 (2000) 49–61. [Google Scholar]
  3. A.A. Agrachev and A.V. Sarychev, Navier-Stokes equations: controllability by means of low modes forcing. J. Math. Fluid Mech. 7 (2005) 108–152. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.A. Agrachev and A.V. Sarychev, Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing. Commun. Math. Phys. 265 (2006) 673–697. [CrossRef] [Google Scholar]
  5. A. Agrachev and A. Sarychev, Solid controllability in fluid dynamics. In Instability in Models Connected with Fluid Flows. I, Int. Math. Ser. (N.Y.). Springer, New York (2008) 1–35. [Google Scholar]
  6. V. Barbu, The irreducibility of transition semigroups and approximate controllability. Stochastic Partial Differential Equations and Applications-VII (2005) 21. [CrossRef] [Google Scholar]
  7. V. Barbu and G. Da Prato, Irreducibility of the transition semigroup associated with the two phase Stefan problem. Variational Analysis and Applications. Springer, Boston, MA (2005) 147–59. [CrossRef] [Google Scholar]
  8. V. Barbu and G. Da Prato, Irreducibility of the transition semigroup associated with the stochastic obstacle problem. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005) 397–406. [CrossRef] [Google Scholar]
  9. L. Bo and Y. Jiang, Large deviation for the nonlocal Kuramoto-Sivashinsky SPDE. Nonlinear Analysis: Theory Methods Appl. 82 (2013) 100–114. [CrossRef] [Google Scholar]
  10. L. Bo, K. Shi and Y. Wang, On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps. Stochastics Dyn. 7 (2007) 439–457. [CrossRef] [Google Scholar]
  11. P.M. Boulvard, P. Gao and V. Nersesyan, Controllability and ergodicity of 3D primitive equations driven by a finite-dimensionalforce (2020). [Google Scholar]
  12. N. Carreno and M.C. Santos, Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation. J. Differ. Equ. 266 (2019) 6068–6108. [CrossRef] [Google Scholar]
  13. C.M. Cazacu, L.I. Ignat and A.F. Pazoto, Null-controllability of the linear Kuramoto–Sivashinsky equation on star-shaped trees. SIAM J. Control Optim. 56 (2018) 2921–2958. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differ. Equ. 250 (2011) 2024–2044. [CrossRef] [Google Scholar]
  15. E. Cerpa, P. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation. ESAIM: COCV 23 (2017) 165–194. [CrossRef] [EDP Sciences] [Google Scholar]
  16. P. Collet, J.P. Eckmann, H. Epstein, et al., A global attracting set for the Kuramoto-Sivashinsky equation. Commun. Math. Phys. 152 (1993) 203–214. [CrossRef] [Google Scholar]
  17. G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press (2014). [CrossRef] [Google Scholar]
  18. Z. Dong, F.Y. Wang and L. Xu, Irreducibility and asymptotics of stochastic Burgers equation driven by α−stable processes. Potential Anal. 52 (2020) 371–392. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Duan and V.J. Ervin, On the stochastic Kuramoto-Sivashinsky equation. Nonlinear Analysis: Theory Methods Appl. 44 (2001) 205–216. [CrossRef] [Google Scholar]
  20. J. Duan and V.J. Ervin, Dynamics of a nonlocal Kuramoto-Sivashinsky equation. J. Differ. Equ. 143 (1998) 243–266. [CrossRef] [Google Scholar]
  21. S. Dubljevic, Boundary model predictive control of Kuramoto-Sivashinsky equation with input and state constraints. Comput. Chem. Eng. 34 (2010) 1655–61. [CrossRef] [Google Scholar]
  22. B. Ferrario, Invariant measures for a stochastic Kuramoto-Sivashinsky equation. Stoch. Anal. Appl. 26 (2008) 379–407. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Flandoli, Irreducibility of the 3-D stochastic Navier-Stokes equation. J. Funct. Anal. 149 (1997) 160–177. [CrossRef] [MathSciNet] [Google Scholar]
  24. F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 172 (1995) 119–141. [CrossRef] [Google Scholar]
  25. P. Gao, Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evol. Equ. Control Theory 4 (2015) 281–296. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Gao, Global Carleman estimates for the linear stochastic Kuramoto-Sivashinsky equations and their applications. J. Math. Anal. Appl. 464 (2018) 725–748. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Gao, Null controllability with constraints on the state for the linear stochastic Kuramoto-Sivashinsky equation. Physica A (2020). [Google Scholar]
  28. P. Gao, Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evol. Equ. Control Theory 9 (2020) 181–191. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem. Nonlinear Anal. Theory Methods Appl. (2015) 133–147. [CrossRef] [Google Scholar]
  30. P. Gao, Optimal distributed control of the Kuramoto-Sivashinsky equation with pointwise state and mixed control-state constraints. IMA J. Math. Control Inf. 33 (2016) 791–811. [CrossRef] [Google Scholar]
  31. P. Gao, Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discr. Continu. Dyn. Syst. 38 (2018) 5649. [CrossRef] [Google Scholar]
  32. J. Goodman, Stability of the kuramoto-sivashinsky and related systems. Commun. Pure Appl. Math. 47 (1994) 293–306. [CrossRef] [Google Scholar]
  33. S. Kuksin and A. Shirikyan, Mathematics of two-dimensional turbulence. Cambridge University Press (2012). [CrossRef] [Google Scholar]
  34. Y. Kuramoto, Diffusion-induced chaos in reaction systems. Suppl. Prog. Theor. Phys. 64 (1978) 346–367. [CrossRef] [Google Scholar]
  35. Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems. Theor. Phys. 54 (1975) 687–699. [CrossRef] [Google Scholar]
  36. Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55 (1976) 356–369. [CrossRef] [Google Scholar]
  37. V. Nersesyan, Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Math. Control Related Fields 11 (2021) 237. [CrossRef] [MathSciNet] [Google Scholar]
  38. V. Nersesyan, Approximate controllability of Lagrangian trajectories of the 3D Navier-Stokes system by a finite-dimensional force. Nonlinearity 28 (2015) 825–848. [CrossRef] [MathSciNet] [Google Scholar]
  39. B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations. Commun. Partial Differ. Equ. 14 (1989) 245–297. [CrossRef] [Google Scholar]
  40. A. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term. Math. Control Related Fields 4 (2014) 261. [CrossRef] [MathSciNet] [Google Scholar]
  41. G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations. Acta Astronaut. 4 (1977) 1177–1206. [Google Scholar]
  42. R. Temam and X.M. Wang, Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case. Differ. Integr. Equ. 7 (1994) 1095–1108. [Google Scholar]
  43. R. Wang, J. Xiong and L. Xu, Irreducibility of stochastic real Ginzburg-Landau equation driven by α-stable noises and applications. Bernoulli 23 (2017) 1179–1201. [MathSciNet] [Google Scholar]
  44. K. Yamazaki, Irreducibility of the three, and two and a half dimensional Hall-magnetohydrodynamics system. Physica D (2020). [Google Scholar]
  45. D. Yang, Dynamics for the stochastic nonlocal Kuramoto-Sivashinsky equation. J. Math. Anal. Appl. 330 (2007) 550–70. [CrossRef] [MathSciNet] [Google Scholar]
  46. D. Yang, Random attractors for the stochastic Kuramoto-Sivashinsky equation. Stoch. Anal. Appl. 24 (2006) 1285–1303. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.