Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 18
Number of page(s) 71
DOI https://doi.org/10.1051/cocv/2022005
Published online 24 February 2022
  1. M. Abramowitz and I.A. Stegun, Vol. 55 of Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation (1965). [Google Scholar]
  2. G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of variations and partial differential equations. Springer (2000) 95–114. [Google Scholar]
  3. G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies. Eur. J. Appl. Math. 9 (1998) 261–284. [CrossRef] [Google Scholar]
  4. G. Allaire, Vol. 146 of Shape optimization by the homogenization method. Springer Science & Business Media (2002). [CrossRef] [Google Scholar]
  5. G. Allaire, C. Dapogny, G. Delgado and G. Michailidis, Multi-phase structural optimization via a level set method. ESAIM: COCV 20 (2014) 576–611. [CrossRef] [EDP Sciences] [Google Scholar]
  6. G. Allaire, C. Dapogny and F. Jouve, Shape and topology optimization, in Geometric Partial Differential Equations - Part II. vol. 22 of Handbook of Numerical Analysis. Elsevier (2021) 1–132. [Google Scholar]
  7. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [Google Scholar]
  8. G. Allaire and O. Pantz, Structural optimization with FreeFem++. Struct. Multidiscip. Optim. 32 (2006) 173–181. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Allaire and M. Schoenauer, Vol. 58 of Conception optimale de structures. Springer (2007). [Google Scholar]
  10. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Variat. Partial Differ. Equ. 1 (1993) 55–69. [CrossRef] [Google Scholar]
  11. L. Ambrosio, P. Colli Franzone and G. Savaré, On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomainmodel. Interf. Free Bound. 2 (2000) 213–266. [CrossRef] [Google Scholar]
  12. L. Ambrosio, N. Fusco and D. Pallara, Vol. 254 of Functions of bounded variation and free discontinuity problems. Clarendon Press (2000). [Google Scholar]
  13. L. Ambrosio and H.M. Soner, Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geometry (1994) 693–737. [Google Scholar]
  14. L. Ambrosio and V. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ita.l B (1992) 105–123. [Google Scholar]
  15. L. Ambrosio and V.M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. [CrossRef] [Google Scholar]
  16. S. Amstutz, Connections between topological sensitivity analysis and material interpolation schemes in topology optimization. Struct. Multidiscip. Optim. 43 (2011) 755–765. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Amstutz, Regularized perimeter for topology optimization. SIAM J. Cont. Optim. 51 (2013) 2176–2199. [CrossRef] [Google Scholar]
  18. S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Amstutz, C. Dapogny and À. Ferrer, A consistent relaxation of optimal design problems for coupling shape and topological derivatives. Numer. Math. (2016) 1–60. [Google Scholar]
  20. S. Amstutz, A.A. Novotny and N. Van Goethem, Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Prob. Imag. 8 (2014) 361–387. [CrossRef] [Google Scholar]
  21. S. Amstutz and N. Van Goethem Topology optimization methods with gradient-free perimeter approximation. Interf. Free Bound. 14 (2012) 401–430. [CrossRef] [Google Scholar]
  22. H. Attouch, G. Buttazzo and G. Michaille, Vol. 17 of Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. Siam (2014). [Google Scholar]
  23. G. Aubert, M. Barlaud, O. Faugeras and S. Jehan-Besson, Image segmentation using active contours: Calculus of variations or shape gradients? SIAM J. Appl. Math. 63 (2003) 2128–2154. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Bar, T.F. Chan, G. Chung, M. Jung, N. Kiryati, N. Sochen and L.A. Vese, Mumford and Shah model and its applications to image segmentation and image restoration. Handbook of mathematical methods in imaging (2014) 1–52. [Google Scholar]
  25. M.P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Science & Business Media (2013). [Google Scholar]
  26. T. Borrvall and J. Petersson, Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41 (2003) 77–107. [CrossRef] [Google Scholar]
  27. B. Bourdin, Filters in topology optimization. Int. J. Numer. Methods Eng. 50 (2001) 2143–2158. [CrossRef] [Google Scholar]
  28. B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV 9 (2003) 19–48. [CrossRef] [EDP Sciences] [Google Scholar]
  29. A. Braides, vol. 22 of Gamma-convergence for Beginners. Clarendon Press (2002). [CrossRef] [Google Scholar]
  30. A. Braides, A handbook of ?-convergence, in Handbook of Differential Equations: stationary partial differential equations. Elsevier (2006), pp. 101–213, vol. 3. [CrossRef] [Google Scholar]
  31. A. Bressan and Q. Sun, On the optimal shape of tree roots and branches. Math. Models Methods Appl. Sci. 28 (2018) 2763–2801. [CrossRef] [MathSciNet] [Google Scholar]
  32. E. Bretin, Mouvements par courbure moyenne et méthode de champs de phase. Ph.D. thesis, Institut National Polytechnique de Grenoble-INPG (2009). [Google Scholar]
  33. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media (2010). [Google Scholar]
  34. T.E. Bruns and D.A. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190 (2001) 3443–3459. [CrossRef] [Google Scholar]
  35. E. Cancès, R. Keriven, F. Lodier and A. Savin, How electrons guard the space: shape optimization with probability distribution criteria. Theor. Chem. Accounts 111 (2004) 373–380. [CrossRef] [Google Scholar]
  36. I. Chavel, vol. 98 of Riemannian geometry: a modern introduction. Cambridge University Press (2006). [CrossRef] [Google Scholar]
  37. G. De Philippis and B. Velichkov, Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim 69 (2014) 199–231. [CrossRef] [MathSciNet] [Google Scholar]
  38. M.P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second edition, Courier Dover Publications (2016). [Google Scholar]
  39. S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68 (2015) 808–864. [CrossRef] [Google Scholar]
  40. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (2015). [CrossRef] [Google Scholar]
  41. F. Feppon, G. Allaire, F. Bordeu, J. Cortial and C. Dapogny, Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolutionframework (2018) submitted for publication. [Google Scholar]
  42. F. Feppon, G. Allaire and C. Dapogny, A variational formulation for computing shape derivatives of geometric constraints along rays. ESAIM: Math. Model. Numer. Anal. 54 (2020) 181–228. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  43. A. Ferrer, SIMP-ALL: A generalized SIMP method based on the topological derivative concept. Int. J. Numer. Methods Eng. 120 (2019) 361–381. [CrossRef] [Google Scholar]
  44. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. [CrossRef] [MathSciNet] [Google Scholar]
  45. E. Giusti and G.H. Williams, vol. 80 of Minimal surfaces and functions of bounded variation. Springer (1984). [CrossRef] [Google Scholar]
  46. A. Henrot and M. Pierre, Shape Variation and Optimization, Vol. 28, EMS Tracts in Mathematics (2018). [CrossRef] [Google Scholar]
  47. R.V. Kohn and G.W. Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and effective moduli of materials and media. Springer (1986) 97–125. [CrossRef] [Google Scholar]
  48. P. Kythe, Fundamental solutions for differential operators and applications. Springer Science & Business Media (2012). [Google Scholar]
  49. J.L. Lions, vol. 323 of Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Springer (2006). [Google Scholar]
  50. J.L. Lions and G. Duvaut, Inequalities in mechanics and physics. Springer (1976). [Google Scholar]
  51. A. Maury, G. Allaire and F. Jouve, Shape optimisation with the level set method for contact problems in linearised elasticity. SMAI J. Comput. Math. 3 (2017) 249–292. [CrossRef] [MathSciNet] [Google Scholar]
  52. B. Merriman, J.K. Bence and S. Osher, Diffusion generated motion by mean curvature. Department of Mathematics, University of California, Los Angeles (1992). [Google Scholar]
  53. M. Miranda Jr, D. Pallara, F. Paronetto and M. Preunkert, Short-time heat flow and functions of bounded variation in ℝN. Ann. Facult. Sci. Toulouse: Math. 16 (2007) 125–145. [Google Scholar]
  54. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ratl. Mech. Anal. 98 (1987) 123–142. [CrossRef] [Google Scholar]
  55. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Unione Mat. Ital. Sez. B 14 (1977) 285–299. [Google Scholar]
  56. B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Oxford University Press (2010). [Google Scholar]
  57. F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Pré-publication du Laboratoire d’Analyse Numérique (76015) (1976). [Google Scholar]
  58. A.A. Novotny and J. Sokołowski, Topological derivatives in shape optimization. Springer Science & Business Media (2012). [Google Scholar]
  59. O. Pironneau, Optimal shape design for elliptic systems. Springer (1982). [Google Scholar]
  60. J.A. Sethian, Vol. 3 of Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press (1999). [Google Scholar]
  61. J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489–528. [CrossRef] [MathSciNet] [Google Scholar]
  62. K. Shoemake, Animating rotation with quaternion curves, in Proceedings of the 12th annual conference on Computer graphics and interactive techniques (1985) 245–254. [Google Scholar]
  63. O. Sigmund and K. Maute, Topology optimization approaches. Struct. Multidiscip. Optim. 48 (2013) 1031–1055. [CrossRef] [MathSciNet] [Google Scholar]
  64. O. Sigmund and J. Petersson, Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization 16 (1998) 68–75. [CrossRef] [Google Scholar]
  65. M. Solci and E. Vitali, Variational models for phase separation. Interfaces Free Bound. 5 (2003) 27–46. [CrossRef] [MathSciNet] [Google Scholar]
  66. M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Computer Methods Appl. Mech. Eng. 192 (2003) 227–246. [CrossRef] [Google Scholar]
  67. J. Wettlaufer, M. Jackson and M. Elbaum, A geometric model for anisotropic crystal growth. J. Phys. A: Math. General 27 (1994) 5957. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.