Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 21
Number of page(s) 36
DOI https://doi.org/10.1051/cocv/2022015
Published online 08 March 2022
  1. C. Alasseur, I. Ben Taher and A. Matoussi, An extended mean field games for storage in smart grids. J. Optim. Theory Appl. 184 (2020) 644–670. [CrossRef] [MathSciNet] [Google Scholar]
  2. Y. Achdou, M. Bardi and M. Cirant, Mean field games models of segregation. Math. Models Methods Appl. Sci. 27 (2017) 75–113. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bensoussan, J. Frehse and P. Yam, Mean field games and mean field type control theory. Springer Briefs in Mathematics, NY (2013). [Google Scholar]
  4. A. Bensoussan, M.H.M. Chau and S.C.P. Yam, Mean field games with a dominating player. Appl. Math. Optim. 74 (2016) 91–128. [Google Scholar]
  5. A. Bensoussan, T. Huang and M. Lauriere, Mean field control and mean field game models with several populations. Minimax Theory Appl. 03 (2018) 173–209. [Google Scholar]
  6. P. Cardaliaguet, Notes on Mean Field Games (2013). Available at https://www.ceremade.dauphine.fr/~cardaliaguet. [Google Scholar]
  7. P. Cardaliaguet, M. Cirant and A. Porretta, Remarks on Nash equilibria in mean field game models with a major player. Proc. Amer. Math. Soc. 148 (2020) 4241–4255. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control. Optim. 51 (2013) 2705–34. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. Ann. Probab. 43 (2015) 2647–2700. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I. Springer International Publishing, Switzerland (2018). [Google Scholar]
  11. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications II. Springer International Publishing, Switzerland (2018). [Google Scholar]
  12. R. Carmona, F. Delarue and D. Lacker, Mean field games with common noise. Ann. Probab. 44 (2016) 3740–803. [MathSciNet] [Google Scholar]
  13. R. Carmona and X. Zhu, A probabilistic approach to mean field games with major and minor players. Ann. Appl. Probab. 26 (2016) 1535–80. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Casgrain and S. Jaimungal, Mean-field games with differing beliefs for algorithmic trading. Math. Finance 30 (2020) 995–1034. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Cirant, Multi-population mean field games system with Neumann boundary conditions. J. Math. Pures Appl. 103 (2015) 1294–1315. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Djehiche, J. Barreiro-Gomez and H. Tembine, Electricity price dynamics in the smart grid: a mean-field-type game perspective, 23rd International Symposium on Mathematical Theory of Networks and Systems Hong Kong University of Science and Technology, Hong Kong, July 16–20, 2018 (2018). [Google Scholar]
  17. M.F. Djete, Mean field games of controls: on the convergence of Nash equilibria. Preprint arXiv:2006.12993 (2020). [Google Scholar]
  18. M.F. Djete, Extended mean field control problems: a propagation of chaos result. Preprint arXiv:2006.12996 (2020). [Google Scholar]
  19. D. Evangelista and Y. Thamsten, On finite population games of optimal trading. Preprint arXiv:2004.00790 (2020). [Google Scholar]
  20. E. Feleqi, The derivation of ergodic mean field game equations for several population of players. Dyn. Games Appl. 3 (2013) 523–536. [CrossRef] [MathSciNet] [Google Scholar]
  21. O. Féron, P. Tankov and L. Tinsi, Price formation and optimal trading in intraday electricity markets. Preprint arXiv:2009.0478 (2020). [Google Scholar]
  22. O. Féron, P. Tankov and L. Tinsi, Price formation and optimal trading in intraday electricity markets with a Major Player. Risks 8 (2020) 133. [CrossRef] [Google Scholar]
  23. D. Firoozi, S. Jaimungal and P. Caines, Convex analysis for LQG systems with applications to major-minor LQG mean-field game systems. Syst. Control Lett. 142 (2020) 104734. [CrossRef] [Google Scholar]
  24. G. Fu, P.Graewe, U. Horst and A. Popier, A mean field game of optimal portfolio liquidation. Math. Oper. Res. (2021) 1–32. [Google Scholar]
  25. G. Fu, U. Horst, Mean-field leader-follower games with terminal state constraint. SIAM J. Control. Optim. 58 (2018) 2078–2113. [Google Scholar]
  26. M. Fujii, Probabilistic approach to mean field games and mean field type control problems with multiple populations. To appear in Minimiax Theory Appl. (2019). [Google Scholar]
  27. M. Fujii and A. Takahashi, A mean field game approach to equilibrium pricing with market clearing condition. To appear in SIAM J. Control Optim. (2020). [Google Scholar]
  28. M. Fujii and A. Takahashi, Strong convergence to the mean-field limit of a finite agent equilibrium. The paper was originally titled as “A finite agent equilibrium in an incomplete market and its strong convergence to the mean-field limit”. To appear SIAM J. Financial Math. (2020). [Google Scholar]
  29. D.A. Gomes, L. Nurbekyan and E.A. Pimentel, Economic models and mean-field games theory. Publicaoes Matematicas, IMPA, Rio, Brazil (2015). [Google Scholar]
  30. D.A. Gomes, E.A. Pimental and V. Voskanyan, Regularity Theory for Mean-field game systems. Springer Briefs in Mathematics (2016). [CrossRef] [Google Scholar]
  31. D.A. Gomes and J. Saude, A mean-field game approach to price formation. Dyn. Games Appl. (2020). https://doi.org/10.1007/s13235-020-00348-x. [Google Scholar]
  32. O. Gueant, J. Lasry and P. Lions, Mean field games and oil production. Economica (2010). [Google Scholar]
  33. M. Huang, Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM. J. Control. Optim. 48 (2010) 3318–53. [CrossRef] [Google Scholar]
  34. M. Huang, R. Malhame and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252. [Google Scholar]
  35. M. Huang, R. Malhame and P.E. Caines, Nash certainty equivalence in large population stochastic dynamic games: connections with the physics of interacting particle systems. Proceedings of the 45th IEEE Conference on Decision and Control (2006) 4921–4926. [CrossRef] [Google Scholar]
  36. M. Huang, R. Malhame and P.E. Caines, An invariance principle in large population stochastic dynamic games. J. Syst. Sci. Complexity 20 (2007) 162–172. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Huang, R. Malhame and P.E. Caines, Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Autom. Control 52 (2007) 1560–71. [CrossRef] [Google Scholar]
  38. V.N. Kolokoltsov and O.A. Malafeyev, Many agent games in socio-economic systems: corruption, inspection, coalition building, network growth, security. Springer Series in Operations Research and Financial Engineering (2019). [CrossRef] [Google Scholar]
  39. D. Lacker, Mean field games via controlled martingales problems: Existence of Markovian equilibria. Stochastic Process. Appl. 125 (2015) 2856–94. [CrossRef] [MathSciNet] [Google Scholar]
  40. D. Lacker, A general characterization of the mean field limit for stochastic differential games. Probab. Theory Relat. Fields 165 (2016) 581–648. [Google Scholar]
  41. J. M. Lasry and P.L. Lions, Jeux a champ moyen I. Le cas stationnaire. C. R. Sci. Math. Acad. Paris 343 (2006) 619–625. [CrossRef] [MathSciNet] [Google Scholar]
  42. J.M. Lasry and P.L. Lions, Jeux a champ moyen II. Horizon fini et controle optimal. C. R. Sci. Math. Acad. Paris 343 (2006) 679–684. [CrossRef] [MathSciNet] [Google Scholar]
  43. J.M. Lasry and P.L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  44. J.M. Lasry and P.L. Lions, Mean-field games with a major player. Comptes Rendus Math. 356 (2018) 886–890. [CrossRef] [MathSciNet] [Google Scholar]
  45. C.A. Lehalle and C. Mouzouni, A mean field game of portfolio trading and its consequences on perceived correlations. Available at https://arxiv.org/pdf/1902.09606.pdf (2019). [Google Scholar]
  46. M. Laurière and L. Tangi, Convergence of large population games to mean field games with interaction through the controls. Preprint arXiv:2004.0835 (2020). [Google Scholar]
  47. M. Nourian and P. Caines, ϵ-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM. J. Control. Optim. 51 (2020) 3302–31. [Google Scholar]
  48. A. Shrivats, D. Firoozi and S. Jaimungal, A mean-field game approach to equilibrium pricing, optimal generation, and trading in solar renewable energy certificate markets. Preprint arXiv:2003.04938 (2020). [Google Scholar]
  49. S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825–843. [CrossRef] [MathSciNet] [Google Scholar]
  50. B.H. Xing and G. Žitković, A class of globally solvable Markovian quadratic bsde systems and applications. Ann. Prob. 46 (2018) 491–550. [Google Scholar]
  51. J. Yong, Finding adapted solutions of forward-backward stochastic differential equations: method of continuation. Probab. Theory Related Fields 107 (1997) 537–572. [CrossRef] [MathSciNet] [Google Scholar]
  52. J. Yong, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control. Optim. 48 (2010) 4119–4156. [CrossRef] [MathSciNet] [Google Scholar]
  53. J. Yong, Forward-backward stochastic differential equations with mixed initial-terminal conditions. Trans. Am. Math. Soc. 362 (2010) 1047–1096. [Google Scholar]
  54. X. Yu, Y. Zhang and Z. Zhou, Teamwise mean field competitions. arXiv:2006.14472 (2020). [Google Scholar]
  55. K. Weston and G. Žitković, An incomplete equilibrium with a stochastic annuity. Finance Stoch. 24 (2020) 359–382. [CrossRef] [MathSciNet] [Google Scholar]
  56. J. Zhang, Backward Stochastic Differential Equations. Springer, NY (2017). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.