Open Access
Issue
ESAIM: COCV
Volume 28, 2022
Article Number 6
Number of page(s) 21
DOI https://doi.org/10.1051/cocv/2021109
Published online 17 January 2022
  1. B. Ainseba and S. Aniţa, Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system. Nonlinear Anal. 61 (2005) 491–501. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.R. Aithal and R. Raut, On the extrema of Dirichlet’s first eigenvalue of a family of punctured regular polygons in two dimensional space forms. Proc. Indian Acad. Sci. Math. Sci. 122 (2012) 257–281. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.H.C. Anisa and A.R. Aithal, On two functionals connected to the Laplacian in a class of doubly connected domains in space-forms. Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 93–102. [CrossRef] [MathSciNet] [Google Scholar]
  4. T.V. Anoop and K. Ashok Kumar, On reverse Faber-Krahn inequalities. J. Math. Anal. Appl. 485 (2020) 123766. [CrossRef] [MathSciNet] [Google Scholar]
  5. T.V. Anoop, V. Bobkov and S. Sasi, On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli. Trans. Am. Math. Soc. 370 (2018) 7181–7199. [Google Scholar]
  6. M.S. Ashbaugh and R.D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, in theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. Vol. 76 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI (2007) 105–139. [CrossRef] [Google Scholar]
  7. S. Axler, P. Bourdon and W. Ramey, Harmonic function theory. Vol. 137 of Graduate Texts in Mathematics. Springer-Verlag, New York (2001), second ed. [CrossRef] [Google Scholar]
  8. C. Bandle, Isoperimetric inequalities and applications. Vol. 7 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London (1980). [Google Scholar]
  9. R.J. Biezuner, Best constants in Sobolev trace inequalities. Nonlinear Anal. 54 (2003) 575–589. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81 (2001) 69–71. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Bucur, V. Ferone, C. Nitsch and C. Trombetti, Weinstock inequality in higher dimensions. J. Differ. Geom. 118 (2021) 1–21. [CrossRef] [Google Scholar]
  12. D. Bucur and M. Nahon, Stability and instability issues of the Weinstock inequality. Trans. Am. Math. Soc. 374 (2021) 2201–2223. [Google Scholar]
  13. A.M.H. Chorwadwala and R. Mahadevan, An eigenvalue optimization problem for the p-Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) 1145–1151. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.M.H. Chorwadwala and M.K. Vemuri, Two functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact type. Geom. Dedicata 167 (2013) 11–21. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Crasta, I. Fragalà and F. Gazzola, A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 164 (2002) 189–211. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Dittmar, Zu einem Stekloffschen Eigenwertproblem in Ringgebieten. Mitt. Math. Sem. Giessen (1996) 1–7. [Google Scholar]
  17. A. El Soufi and E.M. Harrell, II, On the placement of an obstacle so as to optimize the Dirichlet heat trace. SIAM J. Math. Anal. 48 (2016) 884–894. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. El Soufi and R. Kiwan, Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry. SIAM J. Math. Anal. 39 (2007/08) 1112–1119. [Google Scholar]
  19. A. El Soufi and R. Kiwan, Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Commun. Pure Appl. Anal. 7 (2008) 1193–1201. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.F. Escobar, Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37 (1988) 687–698. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Faber, Dass unter allen homogenen membranen von gleicher fläche undgleicher spannung die kreisförmige den tiefsten grundtongibt. Sitzungsberichte der mathematischphysikalischen Klasse der Bauerischen Akademie der Wissenschaften zu München Jahrgang (1923) 169–172. [Google Scholar]
  22. J. Fernández Bonder, R. Orive and J.D. Rossi, The best Sobolev trace constant in domains with holes for critical or subcritical exponents. ANZIAM J. 49 (2007) 213–230. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Fernández Bonder, J.D. Rossi and N. Wolanski, Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant. SIAM J. Control Optim. 44 (2005) 1614–1635. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Fraser and R. Schoen, Shape optimization for the Steklov problem in higher dimensions. Adv. Math. 348 (2019) 146–162. [CrossRef] [MathSciNet] [Google Scholar]
  25. N. Gavitone, D.A. La Manna, G. Paoli and L. Trani, A quantitative Weinstock inequality for convex sets. Calc. Var. Partial Differential Equ. 59 (2020) 2. [CrossRef] [Google Scholar]
  26. N. Gavitone, G. Paoli, G. Piscitelli and R. Sannipoli, An isoperimetric inequality for the first Steklov–Dirichlet Laplacian eigenvalue of convex sets with a spherical hole (2021). [Google Scholar]
  27. B. Georgiev and M. Mukherjee, On maximizing the fundamental frequency of the complement of an obstacle. C. R. Math. Acad. Sci. Paris 356 (2018) 406–411. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Girouard, M. Karpukhin and J. Lagacé, Continuity of eigenvalues and shape optimisation for Laplace and Steklov problems. Geom. Funct. Anal. 31 (2021) 513–561. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7 (2017) 321–359. [CrossRef] [MathSciNet] [Google Scholar]
  30. D.S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55 (2013) 601–667. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Hantke, Summen reziproker Eigenwerte, PhD thesis, Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Hall, Wittenberg (2006). [Google Scholar]
  32. E.M. Harrell, II, P. Kröger and K. Kurata, On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (2001) 240–259. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhäuser Verlag, Basel (2006). [CrossRef] [Google Scholar]
  34. A. Henrot and D. Zucco, Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19 (2019) 1535–1559. [MathSciNet] [Google Scholar]
  35. J. Hersch, Contribution to the method of interior parallels applied to vibrating membranes, in Studies in mathematical analysis and related topics. Stanford Univ. Press, Stanford, Calif. (1962) 132–139. [Google Scholar]
  36. J. Hong, M. Lim and D.-H. Seo, On the first Steklov–Dirichlet eigenvalue for eccentric annuli. Annali di Matematica (2021). https://doi.org/10.1007/s10231-021-01137-y. [Google Scholar]
  37. S. Kesavan, On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 617–624. [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Kiwan, On the nodal set of a second Dirichlet eigenfunction in a doubly connected domain. Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 6 (2018) 863–873. [CrossRef] [Google Scholar]
  39. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94 (1925) 97–100. [Google Scholar]
  40. D.H. Lehmer, Interesting series involving the central binomial coefficient. Am. Math. Monthly 92 (1985) 449–457. [CrossRef] [Google Scholar]
  41. G. Paoli, G. Piscitelli and R. Sannipoli, A stability result for the Steklov Laplacian eigenvalue problem with a spherical obstacle. Commun. Pure Appl. Anal. 20 (2021) 145–158. [CrossRef] [MathSciNet] [Google Scholar]
  42. G. Paoli, G. Piscitelli and L. Trani, Sharp estimates for the first p-Laplacian eigenvalue and for the p-torsional rigidity on convex sets with holes. ESAIM: COCV 26 (2020) 111. [CrossRef] [EDP Sciences] [Google Scholar]
  43. L.E. Payne and H.F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2 (1961) 210–216. [Google Scholar]
  44. L.R. Quinones, A critical domain for the first normalized nontrivial Steklov eigenvalue among planar annular domains. Preprint (2019). [Google Scholar]
  45. A.G. Ramm and P.N. Shivakumar, Inequalities for the minimal eigenvalue of the Laplacian in an annulus. Math. Inequal. Appl. 1 (1998) 559–563. [MathSciNet] [Google Scholar]
  46. D.-H. Seo, A shape optimization problem for the first mixed Steklov-Dirichlet eigenvalue. Ann. Global Anal. Geom. 59 (2021) 345–365. [CrossRef] [MathSciNet] [Google Scholar]
  47. G. Szegö, Inequalities for certain eigenvalues of a membrane of given area. J. Ratl. Mech. Anal. 3 (1954) 343–356. [Google Scholar]
  48. S. Verma and G. Santhanam, On eigenvalue problems related to the Laplacian in a class of doubly connected domains. Monatsh. Math. 193 (2020) 879–899. [CrossRef] [MathSciNet] [Google Scholar]
  49. H.F. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem. J. Ratl. Mech. Anal. 5 (1956) 633–636. [Google Scholar]
  50. R. Weinstock, Inequalities for a classical eigenvalue problem. J. Ratl. Mech. Anal. 3 (1954) 745–753. [Google Scholar]
  51. A. Yger, Analyse Complexe. https://www.math.u-bordeaux.fr/~ayger/coursAC-2011.pdf [accessed 19.11. 2021]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.